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A R T I C L E   I N F O  A B S T R A C T  
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 This study examines the effects of different types of digitalization on sustainable 

environmental management using quarterly data for Türkiye covering the period 

1993-2023. Internet use, mobile subscriptions, and fixed line subscriptions are 

employed as the main indicators representing digitalization, while carbon 

emissions serve as the measure of environmental quality. To capture the 

relationships between variables across different points of the distribution, the 

Cross-Quantile Regression (CQR) method is applied, and the robustness of the 

findings is further assessed using Modified Quantile Regression (MQR) and 

Quantile on Quantile Kernel Regularized Least Squares (QQ-KRLS). The results 

indicate that internet use negatively affects environmental quality particularly in 

the lower carbon emission quantiles. However, as emission levels rise, the impact 

of internet penetration weakens considerably and becomes statistically 

insignificant in the higher quantiles. Mobile subscriptions are found to deteriorate 

environmental quality most notably in the middle quantiles, whereas the effects at 

the lower and upper quantiles remain limited. In contrast, fixed line subscriptions 

generally reduce carbon emissions, with this beneficial effect becoming more 

pronounced in the medium and high emission quantiles. These findings 

demonstrate that the environmental effects of different digitalization types are not 

homogeneous; rather, they vary depending on the emission level and display a 

nonlinear structure.  

 

1. Introduction 

 

Digitalization transforms the functioning of economic and social systems, generating 

multidimensional effects on environmental sustainability. As digital technologies reshape energy use 

patterns, production processes, and consumer behaviors, the role of the digital economy in 

environmental quality has become increasingly central (Ullah et al. 2024; Tekbaş and İslamoğlu 2025). 

This transformation not only accelerates information flows but also creates new opportunities for 

monitoring, measuring, and managing environmental risks. The strengthening of digital infrastructures 

supports the development of systems that enable more precise monitoring of carbon emissions and 

energy consumption. Through big data analytics, sensor networks, and smart city technologies, 

environmental indicators can be tracked in real time, enhancing environmental management capacity 

(Yang et al. 2022; Ma and Wu 2022). As evidenced in digital city applications, digitalization accelerates 

policy interventions by improving the flow of environmental information.  

https://jsdf.org.tr/index.jsp
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Digitalization also enhances efficiency in production processes, contributing to the reduction of 

environmental pressures. Industrial digitalization, automation, and robotics can lower carbon intensity, 

particularly in energy intensive sectors (Yao et al. 2024; Jingren et al. 2025). Increasing digital inputs 

in production offers the possibility of generating the same output with lower energy costs, thereby 

improving carbon productivity (Tang et al. 2023). 

The environmental impact of digitalization exhibits heterogeneity across sectors. While certain 

components of the digital economy, such as data centers, mobile communication networks, and high-

density digital infrastructures, may increase energy demand (Zhang and Wang 2023; Du and Wang 

2024), fixed line infrastructures or optimized digital processes tend to exhibit relatively lower carbon 

effects (Pan et al. 2023). Thus, the environmental influence of digitalization is far from linear and varies 

depending on the type of digital technology deployed. Another dimension of digital transformation 

relates to improving organizational sustainability performance. The integration of digital technologies 

into supply chains facilitates the monitoring of environmental impacts at every stage of production and 

distribution, aiding firms in meeting carbon neutral objectives (Li et al. 2025; Chu et al. 2023). By 

enhancing governance capacity, digitalization strengthens transparency and accountability mechanisms, 

thereby supporting more effective environmental decision making. 

Digitalization also has a transformative effect on individual behavior. The widespread use of digital 

platforms fosters environmentally conscious consumption habits and increases awareness of low-carbon 

choices (Zhang et al. 2020; Xie 2024). Enhanced information flow in the digital environment raises 

societal awareness and encourages the adoption of sustainable lifestyles. Overall, digitalization is a 

multidimensional transformation tool that contributes to environmental sustainability both directly and 

indirectly. While the expansion of the digital economy holds the potential to improve environmental 

performance, some components may increase energy demand and create environmental trade-offs. 

Consequently, assessing the digitalization-environment nexus requires a flexible and comprehensive 

framework that accounts for the type of digitalization, energy infrastructure, and country specific 

conditions (Škare et al. 2024; Brenner and Hartl 2021). 

The primary objective of this study is to reveal the effects of different dimensions of digitalization 

on environmental quality in Türkiye and to empirically assess the role of digital transformation in 

sustainable environmental management. The relationships between carbon emissions and the 

components of digitalization, namely internet usage, mobile subscriptions, and fixed line subscriptions, 

are examined within a holistic framework that considers different points of the distribution. In this 

context, the study aims to make the heterogeneous and regime dependent nature of the digitalization and 

environment nexus visible, at a time when most of the literature relies on linear models.  

The empirical analysis employs the Cross Quantile Regression (CQR) method, which allows 

measurement of how the relationship between variables changes across different emission levels. Unlike 

traditional mean based approaches, CQR incorporates the full distribution of the independent variables 

and reveals how relationships differ across both lower and upper quantiles. To evaluate the robustness 

of the findings, Modified Quantile Regression (MQR) and Quantile on Quantile Kernel Regularized 

Least Squares (QQKRLS) methods are also implemented, enabling the nonlinear structure of the 

relationships to be tested within multiple econometric frameworks. The study uses quarterly data for 

Türkiye covering the period 1993 to 2023.   

The primary motivation of this study stems from the fact that the existing literature contains very few 

studies that examine the effects of different dimensions of digitalization on environmental quality in the 

context of Türkiye using a quantile based perspective. The digitalization environment nexus has 

predominantly been analyzed through linear and mean based approaches; however, such methods 

largely overlook the reality that the environmental impacts of digitalization may vary depending on 

emission levels, economic structure, and the intensity of technological usage. In contrast, the 

environmental consequences of digital technologies may emerge in a nonlinear and heterogeneous 

manner through channels such as energy demand, production efficiency, and the structure of 

communication infrastructure. This gap is even more pronounced in the context of Türkiye. While 

Türkiye has experienced a rapid digital transformation over the past three decades, it has simultaneously 

faced increasing energy demand and environmental pressures. Despite this, the conditions under which 

different forms of digitalization (such as internet usage, mobile communication, and fixed line 

infrastructure) generate adverse or favorable effects on environmental quality have not been sufficiently 

analyzed. Existing studies generally represent digitalization with a single indicator and fail to account 
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for country specific structural dynamics. Aiming to fill this gap, the present study employs modern 

quantile based econometric methods that examine the environmental effects of digitalization across the 

entire distribution. Through the use of CQR, MQR, and QQKRLS approaches, the study enables a 

detailed assessment of how the impacts of digitalization on environmental quality differ across low, 

medium, and high emission levels. Unlike conventional models that focus solely on average effects, 

these methods make it possible to uncover the nonlinear, regime dependent, and asymmetric nature of 

the relationships. 

Within this framework, the findings expected to be obtained from the study are anticipated to 

demonstrate that the environmental impacts of digital infrastructure investments and communication 

technologies are shaped not by a uniform and linear structure, but rather through multiple channels and 

under varying conditions. This perspective allows for a more nuanced evaluation of the circumstances 

under which digitalization may exert either positive or negative effects on environmental quality through 

mechanisms such as energy consumption, carbon intensity, and patterns of technological use. This 

approach offers an analytical framework that can contribute to the design of digital transformation 

strategies that are more closely aligned with environmental sustainability objectives from a 

policymaking perspective. In particular, indicators derived from quantile based analyses are expected to 

reveal the levels at which digitalization has the potential to intensify or alleviate environmental pressure, 

thereby providing guidance for the development of sustainable digital transformation policies that are 

more targeted, flexible, and context specific. 

This study is organized into seven sections. Following the introduction, the second section 

summarizes the literature on the relationship between digitalization and environmental quality. The third 

section presents the data set and the methodology in detail, while the fourth section reports the empirical 

findings. The fifth section discusses the results, and the sixth section provides policy recommendations. 

The seventh and final section outlines the limitations of the study and offers suggestions for future 

research. 

 

2. Literature review 

 

The body of research examining the relationship between digitalization and environmental quality 

has expanded rapidly in recent years at both the macroeconomic and sectoral levels. Evidence from 

OECD and other developed countries demonstrates that digitalization affects environmental quality 

through both direct and indirect channels. For example, Ullah et al. (2024) investigate the impact of 

digitalization, technological innovation, and financial innovation on environmental quality within an N-

shaped EKC framework for OECD countries, showing that beyond certain thresholds, digitalization can 

play an emission reducing role. Similarly, Yu and Liu (2024), using data for 136 countries, find that 

digital transformation can align with environmental efficiency under appropriate institutional and 

technological conditions. Ni et al. (2022) and Škare et al. (2024) analyze digitalization from the 

perspective of ecological footprint and load capacity factors, emphasizing that natural resource use, 

governance quality, and digital infrastructure jointly shape sustainable growth trajectories. 

Country and region specific studies reveal that the digitalization environment relationship is context 

dependent and largely nonlinear. Ma and Wu (2022) show that smart city applications in China may 

improve energy efficiency, yet poorly designed digital infrastructure can also intensify environmental 

pressure. Du and Wang (2024) and Yang et al. (2022) find that China’s digital economy has the potential 

to reduce carbon intensity, although the magnitude of the effect varies by region and industrial structure. 

Adha et al. (2023) for Taiwan and Onyeneke et al. (2024) for Africa document that ICT and renewable 

energy consumption influence carbon emissions jointly, indicating that digitalization contributes to 

environmental gains only when assessed together with the energy mix and climate policies. 

Studies focusing on sectoral effects show that digitalization has heterogeneous environmental 

implications across manufacturing, agriculture, animal husbandry, construction, and supply chains. 

Tang et al. (2023), Fang et al. (2022), and Zhang et al. (2023) examine input digitalization in the 

manufacturing sector, finding that digital technologies reduce carbon emission intensity through process 

optimization, although the effect may remain limited in energy intensive subsectors. Zhao et al. (2023) 

and He et al. (2025) highlight the potential of digital tools to lower carbon intensity in agriculture and 

animal husbandry, while Niu et al. (2025) analyze the effect of digital inputs on CO2 emissions in 
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China’s construction sector under the dual carbon policy framework. Li and Liao (2022) and Ma et al. 

(2023) emphasize the synergistic effects of digitalization and industrialization on total factor carbon 

performance, whereas Li et al. (2025) examine the role of supply chain digitalization in carbon neutral 

management. 

Firm level studies provide evidence that enterprise digital transformation reduces emissions and 

affects micro level efficiency dynamics. Shang et al. (2023) and An and Shi (2023) show that digital 

transformation decreases firm level carbon emissions, while Sun et al. (2025) analyze the interaction 

between digitalization and carbon reduction technology R&D within a Stackelberg framework. Chu et 

al. (2023) highlight the role of intelligent device utilization in emission reduction, and Yao et al. (2024) 

demonstrate how industrial robots support net zero targets. Li et al. (2022) and Ma et al. (2023) further 

document the combined influence of digitalization and industrial restructuring on carbon performance. 

Another strand of literature investigates the digitalization-environment relationship in the context of 

energy use, trade, and global value chains. Zhang and Wang (2023) analyze digitalization, electricity 

consumption, and CO2 emissions in the manufacturing industry, while Huang and Zhang (2023) explore 

how digitalization affects carbon emissions embodied in exports through global value chain positioning. 

Ke et al. (2022) and Saqib et al. (2023) examine digitalization together with trade, financial 

development, and renewable energy within the EKC framework, offering insights into the pollution 

haven hypothesis and ecological footprint dynamics.  

Studies such as Zhang et al. (2020), Pan et al. (2023), and Wang and Xu (2021) evaluate the 

relationship between internet use, human capital, and individuals’ environmental perceptions, showing 

that digitalization influences environmental quality not only through technical mechanisms but also via 

behavioral and cognitive channels. Goethals and Ziegelmayer (2024), Xie (2024), and Brenner and Hartl 

(2021) examine environmental concerns, willingness to pay for low carbon electricity, and the links 

between digitalization and ecological, economic, and social sustainability. 

In relation to Türkiye and similar economies, this literature indicates that digitalization does not have 

a uniform or one directional effect on environmental quality. The magnitude and direction of the impact 

vary according to country groups, sectors, types of digital infrastructure, energy composition, and 

institutional frameworks. Considering evidence from OECD, Asian, African, European, and American 

contexts collectively, digitalization can offer significant opportunities for reducing carbon emissions 

and ecological footprints when supported by appropriate energy policies, green innovation, financial 

development, and governance. Otherwise, digitalization may increase environmental pressure through 

higher energy consumption and production scale. This multidimensional and context sensitive structure 

highlights the importance of considering nonlinear and heterogeneous effects when modeling the 

digitalization environment relationship empirically. 

Although the existing literature demonstrates that the relationship between digitalization and 

environmental quality varies significantly across country groups, sectors, types of digital infrastructure, 

and institutional frameworks, studies that examine this relationship specifically for Türkiye, by 

disentangling different dimensions of digitalization, and across the entire distribution remain highly 

limited. In particular, most empirical studies rely on linear or mean based models when assessing the 

environmental impacts of digitalization, an approach that is insufficient for capturing asymmetric, 

nonlinear, and regime dependent effects that vary with emission levels.  

Moreover, the literature largely overlooks comparative analyses of how different components of 

digitalization, such as internet usage, mobile communication, and fixed line infrastructure, affect 

environmental quality within the same country context and under a unified empirical framework. Given 

Türkiye’s rapid digital transformation alongside increasing energy demand and environmental 

pressures, there is a clear need for empirical evidence that identifies the conditions under which 

digitalization exerts either mitigating or aggravating effects on environmental quality using quantile 

based methodologies. In this context, the present study aims to fill an important gap in the literature by 

explicitly accounting for heterogeneity and nonlinearity in the digitalization-environment nexus within 

the Turkish context. 
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3. Data and methodology 

 

3.1. Data 

 

The main purpose of this study is to comprehensively analyze the effects of different dimensions of 

digitalization on environmental sustainability in Türkiye. In the study, digitalization is represented 

through three indicators: internet usage rate (INTERNET), mobile cellular subscriptions (MOBILE), 

and fixed telephone subscriptions (FIXED). These indicators reflect the multidimensional structure of 

digitalization, capturing both modern and traditional communication technologies. The analysis is based 

on quarterly data for the period 1993-2023 for Türkiye, and this long term, high frequency dataset allows 

for a detailed examination of the dynamic relationship between digitalization and carbon emissions 

(CO). 

Türkiye was selected as the focus of the analysis primarily because the country has undergone rapid 

transformation in both its digital infrastructure and economic structure over the past three decades. 

During this period, internet penetration has increased significantly, mobile communication usage has 

become widespread, and the share of the digital services sector has considerably expanded. At the same 

time, Türkiye’s energy consumption and carbon emissions have risen substantially. Therefore, the 

direction and magnitude of the relationship between digitalization and environmental pressure constitute 

a critical area of inquiry for Türkiye from both economic and policy perspectives. In this context, the 

study aims to provide a current and country specific contribution to the literature by revealing whether 

digitalization has an improving or worsening effect on environmental quality. 

 
Table 1. Variable definitions and data sources 

Code Variable name Measurement Source 

CO CO₂ emissions Carbon dioxide (CO2) emissions (t CO2e/capita) WDI 

INTERNET Digitalization-1 Individuals using the Internet (% of population) WDI 

MOBILE Digitalization-2 Mobile cellular subscriptions (per 100 people) WDI 

FIXED Digitalization-3 Fixed telephone subscriptions (per 100 people) WDI 

 

Table 1 summarizes the variables used to examine the relationship between carbon emissions and 

digitalization in the study. While the dependent variable CO₂ emissions represents Türkiye’s 

environmental performance, the INTERNET, MOBILE, and FIXED variables reflect different 

dimensions of digitalization. Internet usage captures the level of modern digital transformation, mobile 

subscriptions indicate the widespread use of digital communication, and fixed telephone subscriptions 

represent the presence of more traditional communication infrastructure. The fact that all data are 

obtained from the World Bank provides a reliable and comparable dataset for the analysis. Within this 

framework, the study allows for a multidimensional evaluation of the effects of digitalization on 

environmental quality. 

In this study, the level of digitalization is proxied by individuals using the Internet (% of population) 

(INTERNET), mobile cellular subscriptions (per 100 people) (MOBILE), and fixed telephone 

subscriptions (per 100 people) (FIXED), which are widely accepted and commonly used indicators in 

the literature to capture digital infrastructure, access, and usage dimensions. A substantial body of 

empirical research examining the environmental and sustainability impacts of digitalization 

conceptualizes digitalization as a multidimensional phenomenon and employs internet usage and mobile 

communication indicators as core explanatory variables. For instance, Jóźwik et al. (2023) and Altay 

Topcu (2025) utilize internet usage and ICT related indicators to investigate the direct and indirect 

effects of digitalization on environmental quality and green growth. Similarly, Tekbaş and İslamoğlu 

(2025) and Ullah et al. (2024) rely on internet and mobile communication indicators when assessing the 

role of digitalization in sustainable environmental management and energy environment relationships. 

Mobile cellular subscriptions, in particular, are frequently used as a proxy for digital inclusion and 

technological diffusion, as demonstrated by Ratombo and Mongale (2024) and Ehigiamusoe et al. 

(2025) in studies focusing on the economic and energy related dimensions of digitalization. Fixed 

telephone subscriptions, on the other hand, reflect the structural and infrastructural foundations of 
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information and communication technologies and are included within composite digitalization 

frameworks in studies such as Elom et al. (2024) and Azu et al. (2024), which examine the 

socioeconomic implications of communication infrastructure. Therefore, the digitalization variables 

employed in this study are not arbitrarily selected but are firmly grounded in established theoretical and 

empirical practices in the literature, aiming to comprehensively capture multiple dimensions of 

digitalization. 

 

3.2. Methodology 

 

To prevent spurious regressions, the analysis first applies the Quantile Augmented Dickey-Fuller 

(QADF) test, which examines stationarity across different points of the conditional distribution rather 

than only at the mean. This allows the test to capture heterogeneity and potential nonlinear persistence 

in the data. Model adequacy is then evaluated using the Brock-Dechert-Scheinkman (BDS, 1996) test 

on the residuals. Rejecting the i.i.d. assumption indicates nonlinear dependence or omitted dynamics 

that linear models cannot detect. Thus, while QADF determines the integration order of the variables, 

the BDS test verifies whether the residuals satisfy independence. The BDS statistic is calculated as 

follows in Equation (1), Equation (2) and Equation (3), respectively: 

 

𝑞𝑐𝑜𝑣𝜏(𝑌, 𝑋) = 𝑐𝑜𝑣 {𝐼(𝑌 −  𝑄𝜏,𝑌 > 0), 𝑥} = 𝐸(𝜑𝜏(𝑌 −  𝑄𝜏,𝑌)(𝑋 − 𝐸(𝑋)) (1) 

𝜑𝜏(𝑤) = 𝜏 − 𝐼(𝑤 < 0) (2) 

𝑊𝑚(𝜖) =
𝑐̂𝑚(𝜖) − 𝑐̂1

𝑚(𝜖)

𝜎𝑚(𝜖)
 (3) 

 

Sim and Zhou’s (2015) quantile on quantile regression (QQR) models the interaction between the 

quantiles of two variables, but the method is highly bandwidth dependent and often suffers from singular 

matrix problems. In addition, QQR lacks a formal statistical inference framework (Adebayo et al. 2025). 

To address these drawbacks, Li (2024) developed Cross Quantile Regression (CQR), which constructs 

quantile series for both the dependent and independent variables and then estimates regressions across 

all quantile combinations. The general structure of CQR is presented in Equation (4). 

 

𝑄𝜏(𝑌)  =  𝛶0(𝜏, 𝜃)  +  𝛶1(𝜏, 𝜃) 𝑄𝜃(𝑋)  +  𝜀(𝜏, 𝜃) (4) 

 

CQR improves upon standard quantile regression by modelling how different quantiles of the 

explanatory variable influence the full distribution of the dependent variable. This approach uncovers 

tail interactions and asymmetric dependence patterns that conventional methods cannot reveal, showing 

how shocks at specific quantiles of X propagate across multiple quantiles of Y (Adebayo et al. 2025). 

As a robustness check, the study applies the Quantile on Quantile Kernel Based Regularized Least 

Squares (QQKRLS) method. KRLS, originally developed by Hainmueller and Hazlett (2014), is a 

flexible machine-learning estimator that avoids strict functional form assumptions. Using Gaussian 

kernels, it captures nonlinear and heterogeneous effects, and evaluates the influence of X on Y through 

pointwise marginal effects, summarised in Equation (5). 

 

𝐸𝑁 [
𝛽𝑌̂

𝛽𝑋𝑘
] =

−2

𝜎2𝑁
∑ ∑ 𝑗𝑖𝑒

‖𝑥𝑖−𝑥𝑘‖2

𝜎2

𝑖𝑘

(𝑋𝑖 − 𝑋𝑘) (5) 

 

The standard KRLS method models only the distribution of the dependent variable and evaluates 

nonlinear effects using an average marginal impact, without accounting for the full distribution of the 

predictor. To address this limitation, QQKRLS extends KRLS by incorporating quantiles of both the 

dependent and independent variables, allowing joint estimation of effect size and significance across the 

entire distribution (Adebayo et al. 2024). Thus, QQKRLS enables a more comprehensive assessment of 

how X influences Y, as shown in Equation (6). 
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𝐸𝑁 [ 
𝛽𝑄𝑌𝜏

^

𝛽𝑄𝑋𝜃𝑘
 ]  =  

−2

𝜎2𝑁
 ∑𝑘 ∑𝑖 𝑗𝑖𝑒

−∥𝑋𝜃𝑖−𝑋𝜃𝑘∥2

𝜎2  (𝑋𝜃𝑖  −  𝑋𝜃𝑘) (6) 

 

4. Empirical results 

 

In this part of the study, the empirical findings on the effects of different types of digitalization on 

sustainable environmental management in Türkiye are presented. Before the main analysis, the QADF 

stationarity test and the BDS nonlinearity test were applied to assess the structural properties of the 

series. Following these preliminary tests, the relationships between the variables were examined using 

the Cross Quantile Regression (CQR) approach, which reveals asymmetric and distribution dependent 

effects. Finally, to evaluate the robustness of the results, additional analyses based on the Modified 

Quantile Regression (MQR) and the Quantile on Quantile Kernel Regularized Least Squares (QQKRLS) 

methods were conducted. 

 
Table 2. Descriptive Statistics 

 CO INTERNET MOBILE FIXED 

 Mean 4.078603 34.18429 62.1185 20.86774 

 Median 4.215612 34.37 86.6345 21.5 

 Maximum 5.474392 85.9607 105.684 28.5 

 Minimum 2.725375 0.00846 0.146933 11.4 

 Std. Dev. 0.861249 29.68826 38.77622 5.822278 

 

Table 2 presents the overall distribution of the variables used in the analysis. The relatively limited 

volatility in the carbon emissions (CO) variable indicates that environmental pressure in Türkiye did not 

exhibit major fluctuations over the examined period. In contrast, the digitalization indicators 

(INTERNET, MOBILE, FIXED) show a wide range of variation, particularly in internet usage and 

mobile subscriptions. This reflects the rapid pace of digital transformation in Türkiye throughout the 

study period. The substantial rise in mobile usage, along with the relatively narrow variation in fixed 

line subscriptions, illustrates a shift from traditional communication infrastructure toward a more mobile 

centered structure. Overall, the descriptive statistics demonstrate that Türkiye's dynamic digitalization 

process provides an important analytical basis for assessing environmental outcomes. 

 

 
Figure 1. Correlations matrix 

 

Figure 1 presents the correlation matrix and shows clear relationships among the variables. Internet 

use, mobile subscriptions, and fixed line subscriptions all display strong and statistically significant 

correlations with carbon emissions. Internet and mobile usage are positively correlated with CO, while 

fixed line usage shows a negative correlation. This indicates that different types of digitalization have 

distinct environmental implications. Overall, the matrix demonstrates the presence of notable linear 

relationships among the variables, highlighting the importance of accounting for these dependencies in 

the empirical analysis. 
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Table 3. BDS test results 

Dimension CO INTERNET MOBILE FIXED 

m2 0.182381* 0.181112* 0.199873* 0.151227* 

m3 0.301736* 0.292013* 0.335064* 0.235111* 

m4 0.378295* 0.359375* 0.427757* 0.280184* 

m5 0.427638* 0.397604* 0.491870* 0.298011* 

m6 0.460516* 0.410732* 0.536176* 0.304430* 
Note: *p < 1% 

 

Table 3 BDS test results show that all variables exhibit statistically significant dependence across 

dimensions m2 to m6. These findings indicate that the CO, INTERNET, MOBILE and FIXED series 

are not independent and identically distributed (i.i.d.), meaning they contain nonlinear structures, 

complex dependencies or hidden dynamics. Therefore, linear models alone are insufficient to fully 

capture the behavior of these variables, and the use of more advanced nonlinear methods is required. 

 

  

  

Figure 2. QADF unit root test 

 

Figure 2 shows that the QADF unit root statistics exceed the critical threshold lines across most 

quantiles. This indicates that the variables contain unit roots at the corresponding quantile levels and are 

non stationary in levels. To ensure the reliability of the analysis and eliminate the risk of spurious 

regression, all variables were transformed into their first differences (I(1)) before proceeding to the next 

modeling steps. In this way, advanced quantile based methods such as CQR and QQKRLS were applied 

to stationary series, ensuring the validity and robustness of the empirical results. 
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Figure 3. Cross quantile regression results 

 

Figure 3 presents the Cross Quantile Regression results and shows that the relationship between 

different forms of digitalization and carbon emissions varies markedly across quantile levels. The 

findings for internet use indicate that the association is stronger at lower CO quantiles, suggesting that 

increases in internet penetration exert a more pronounced environmental impact when emissions are 

relatively low. As emission levels rise, the effect becomes weaker, implying that the marginal 

environmental influence of digital activities diminishes under high emission regimes. This pattern 

demonstrates that the environmental impact of internet use is nonlinear and sensitive to the prevailing 

level of emissions. 

The results for mobile subscriptions show that the interaction with CO is strongest in the middle 

quantile ranges. This suggests that the expansion of mobile communication infrastructure may 

contribute more noticeably to environmental pressure under moderate emission conditions. In contrast, 

the weaker relationship observed at both lower and higher quantiles indicates that the environmental 

effect of mobile usage is heterogeneous across emission regimes and cannot be captured by a simple 

linear structure. 

Fixed line subscriptions generally exhibit a negative association with carbon emissions. This 

relationship becomes more pronounced at medium and high CO quantile levels, indicating that increases 

in fixed line usage tend to reduce emissions, likely due to the relatively lower energy requirements of 

fixed line infrastructure compared to mobile technologies. The weaker effects observed at lower 

quantiles suggest that changes in fixed line usage have limited environmental consequences when 

emissions are already low.  
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Overall, the results demonstrate that the environmental impact of digitalization depends both on the 

type of digital technology and on the position within the carbon emission distribution. Therefore, 

assessments of digital technologies in the context of environmental sustainability must consider these 

quantile dependent and asymmetric dynamics. 
 

 
a) INTERNET 

 
b) MOBILE 

 
c) FIXED 

Figure 4. MQR (red) and averaged CQR (blue) estimates 

 

Figure 4 presents a comparative assessment of the slope coefficients obtained from the Modified 

Quantile Regression (MQR) and the Averaged Cross Quantile Regression (CQR) methods. For all three 

digitalization indicators, the correlation between the MQR and CQR slope series ranges between 0.83 

and 1, indicating that the direction and general pattern of the relationship do not change depending on 

the estimation method and that the findings are highly consistent. While MQR captures sharper 

transitions—especially at the extreme quantiles—revealing regime shifts and threshold points more 

clearly, CQR provides a smoother representation of the same relationships and reliably reflects the 

overall direction of effects. 

For INTERNET, the results show that the slope coefficients with CO increase across quantiles, and 

both methods capture this upward trend consistently. The strengthening effect of internet use on CO at 

higher emission quantiles becomes evident, with MQR capturing sharper rises and CQR presenting a 

stable upward pattern. This indicates that the environmental impact of internet usage is sensitive to 

emission intensity and displays an asymmetric structure. In the case of MOBILE, the results exhibit a 
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similar pattern. The relationship with CO becomes stronger in the middle quantile ranges, with MQR 

identifying sharper jumps in specific bands. This suggests that mobile communication infrastructure 

generates a more pronounced environmental effect under certain emission regimes. The smoother CQR 

profile confirms the positive and quantile dependent structure of this relationship. For FIXED, both 

methods show a negative relationship with CO that intensifies across the quantiles. As fixed line usage 

increases, its reducing effect on emissions becomes stronger at higher emission quantiles. MQR captures 

sharper declines in these ranges, while CQR maintains the general downward pattern. The correlation 

coefficient of 1 indicates that the findings regarding fixed line usage are highly robust. 

Overall, the combined evaluation of the MQR and CQR methods clearly shows that digitalization 

affects environmental outcomes in a quantile dependent and regime sensitive manner. While internet 

and mobile usage increase emissions, fixed line usage reduces them, and these effects are concentrated 

particularly in the upper emission quantiles. Therefore, policy design should jointly consider the general 

direction provided by CQR and the threshold specific intensities identified by MQR to effectively 

manage the net environmental consequences of digitalization. 

 

  

 
Figure 5. QQKRLS results 

 

The QQKRLS results presented in Figure 5 show that the relationship between digitalization 

indicators and carbon emissions varies across quantiles. The findings regarding Internet usage indicate 

that positive and statistically significant coefficients dominate in most quantiles of CO. This result 

supports the positive directional effect observed in the CQR analysis and shows that the relationship 

remains stable across various quantile combinations. The results obtained for mobile usage also display 
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positive and significant values across a wide range of quantiles. The fact that the mobile variable exhibits 

stronger coefficients particularly in the middle and upper quantile regions confirms the positive 

relationship identified in the CQR analysis. The QQKRLS findings demonstrate that the relationship 

between mobile usage and CO remains consistently positive across different emission levels. For fixed 

line usage, the coefficients are predominantly negative and significant in most quantiles. More 

pronounced negative values are observed in the lower and middle quantiles of CO, indicating that the 

mitigating effect seen in the CQR results is also supported by QQKRLS. The similar pattern of the fixed 

line variable across quantiles demonstrates the consistency of the relationship across methods. 

Overall, the QQKRLS results support the main relationship patterns obtained through CQR; Internet 

and mobile indicators show a positive relationship in most quantiles, while the fixed line indicator 

predominantly exhibits a negative relationship. The method’s ability to illustrate the relationship across 

quantiles in detail strengthens the robustness of the findings. 

 

5. Discussion 

 

The main finding of this study is that different components of digitalization in Türkiye produce 

effects in different directions on environmental quality. While internet use and mobile subscriptions 

show a positive relationship with carbon emissions, fixed line usage is found to have an emission 

reducing effect. These results partially align with empirical studies emphasizing that digitalization does 

not automatically imply a ''green'' transformation and may create additional environmental pressure, 

particularly through the channels of rising energy demand and electricity consumption (Zhang and Wang 

2023; Du and Wang 2024). On the other hand, studies showing that smart city applications and digital 

infrastructure investments can reduce carbon intensity indicate that digitalization can also have a 

mitigating potential depending on its design and institutional framework (Ma and Wu 2022; Yang et al. 

2022). In this respect, the findings for Türkiye suggest that the direction and content of digitalization 

play a decisive role in shaping environmental outcomes. 

The positive relationship found for internet usage should be interpreted alongside the dual sided 

discussion in the literature on the environmental impacts of internet technologies. Studies examining the 

global relationship between internet access and carbon emissions report that digital penetration can 

increase energy consumption while also enabling cleaner choices in the long run through channels such 

as human capital and environmental awareness (Wang and Xu 2021; Zhang et al. 2020). Other findings 

emphasize that the environmentally friendly use of internet based systems is shaped by users’ 

environmental sensitivities (Goethals and Ziegelmayer 2024; Xie 2024). The fact that internet use in 

this study worsens environmental quality particularly in certain quantiles indicates that Türkiye’s digital 

infrastructure and usage patterns still operate in ways that increase energy demand, and that 

environmental benefits have not yet been fully internalized. Compared with regional or city level studies 

showing that internet development can sometimes be associated with emission reduction (Pan et al. 

2023), this suggests that country and period specific differences matter significantly. 

It is also notable that the results for mobile subscriptions differ from many enterprise level 

digitalization findings in the literature. A wide range of studies at the firm or sector level report that 

digital transformation can reduce emission intensity through process optimization, resource efficiency, 

and the adoption of green technologies (An and Shi 2023; Shang et al. 2023; Li and Liao 2022; Fang et 

al. 2022; He et al. 2025; Ma et al. 2023; Zhang et al. 2023; Yao et al. 2024; Niu et al. 2025). The positive 

association between mobile usage and carbon emissions found in this study suggests that household and 

consumer driven digital expansion may leave a different environmental footprint from the efficiency 

gains observed at the enterprise level. The negative impact of fixed line usage on emissions, by contrast, 

is consistent with findings highlighting the link between digital infrastructure and energy efficiency, but 

it provides a more original and detailed contribution because most studies do not explicitly distinguish 

fixed lines (Adha et al. 2023; Onyeneke et al. 2024). 

The quantile based results of this study methodologically complement the existing literature, which 

often focuses on average effects through panel or time series models. Studies examining the relationship 

between digitalization, energy, and environmental indicators typically analyze these links within a linear 

framework and report a single long run coefficient (Ullah et al. 2024; Yu and Liu 2024; Ni et al. 2022; 

Škare et al. 2024). While these findings reveal significant trends, they only partially reflect how the 
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effects vary depending on emission levels. In this regard, the quantile based results obtained using Cross 

Quantile Regression, MQR, and QQKRLS demonstrate that the environmental effects of different types 

of digitalization intensify within specific emission regimes and exhibit nonlinear structures. This 

framework enables policymakers especially in countries like Türkiye, where the digital transformation 

process is ongoing to reconsider digital infrastructure investments and regulatory frameworks through 

an emission sensitive perspective that accounts for regime differences. 

 

6. Conclusion and policy implications 

 

This study examines the effects of different digitalization indicators on sustainable environmental 

management in Türkiye using quarterly data for the period 1993-2023 and quantile based econometric 

methods. The findings reveal that the digitalization-emissions relationship exhibits a nonlinear and 

quantile specific structure. Both the CQR and QQKRLS analyses show that increases in internet and 

mobile usage are associated with higher CO₂ emissions across most quantile ranges, whereas fixed line 

usage exerts a mitigating effect particularly at low and medium emission levels. These results indicate 

that the environmental outcomes of digital infrastructure differ according to the technological form and 

its energy consumption profile. 

The findings suggest that the expansion of digitalization without attention to energy efficiency may 

increase carbon intensity. The stronger environmental pressure observed in higher emission quantiles 

for internet and mobile networks underscores the need to integrate digital infrastructure with renewable 

energy and to promote energy efficient network technologies. Given that rising mobile data usage 

elevates energy demand, it is important to encourage operators to adopt energy efficient 5G/6G 

technologies and to promote infrastructure sharing. 

The negative association between fixed line usage and emissions at lower quantiles indicates that 

increasing fiber penetration may serve as an environmentally compatible policy tool. By balancing 

mobile data traffic and enhancing long term energy efficiency, fiber infrastructure emerges as a strategic 

factor in reducing the environmental costs of digitalization. Therefore, the digital transformation process 

should not rely solely on mobile centric structures; rather, a holistic approach that integrates fixed and 

mobile infrastructure is required. 

The findings obtained for Türkiye indicate that the effects of different dimensions of digitalization 

on carbon emissions are not homogeneous and diverge depending on the type of digital infrastructure 

used. The positive relationship between internet usage and mobile communication indicators and CO₂ 

emissions suggests that digitalization in Türkiye primarily operates through consumption, service 

intensity, and energy demand increasing channels. Increased internet and mobile usage raise carbon 

emissions by expanding e-commerce volumes, increasing the energy demand of data centers, and 

accelerating electricity and fossil fuel consumption through the widespread use of digitally driven 

transportation and delivery activities. In contrast, the negative relationship between fixed line usage and 

CO₂ emissions can be explained by the fact that this infrastructure represents a relatively mature and 

more energy efficient communication technology. Compared to mobile networks, fixed line 

infrastructure has lower unit energy consumption, benefits from economies of scale in data transmission, 

and limits additional carbon intensive infrastructure investments. Moreover, the stronger association of 

fixed line usage with institutional, established, and planned communication structures may generate 

emission-reducing effects by enhancing digital efficiency and coordination in production processes. 

These findings demonstrate that the environmental impacts of digitalization in Türkiye are sensitive to 

the type of technology used and highlight the need for digital transformation policies to be designed in 

a way that promotes low-carbon digital infrastructures. 

Overall, the results demonstrate that the environmental effects of digitalization are not homogeneous 

and vary across emission regimes. Thus, policy design should be based on a framework that accounts 

for quantile level heterogeneity, prioritizes energy efficiency, and differentiates technology types. 

Digital infrastructure investments supported by renewable energy, stronger carbon performance 

standards for digital service providers, digital carbon-monitoring systems in public institutions, and the 

widespread adoption of energy efficient devices constitute essential components of a sustainable digital 

transformation. 
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In sum, this study is one of the few analyses to evaluate the environmental effects of digitalization 

from a quantile based perspective and shows that managing the energy intensity of digital infrastructure 

is critical for Türkiye to achieve its sustainable development goals. The findings highlight the need for 

digital transformation policies to integrate environmental and technological dimensions simultaneously 

and provide policymakers with a quantile sensitive analytical foundation. 

 

7. Limitations and directions for future research 

 

This research contains certain limitations stemming from the scope of the analysis, the dataset used, 

and the methodological framework. The empirical examination relies exclusively on quarterly data for 

Türkiye; therefore, the findings are shaped by the country’s unique economic structure, level of 

digitalization, and energy composition. As a result, the relationships identified may not be directly 

generalizable to countries with different institutional characteristics or digital transformation 

trajectories. Furthermore, the digitalization indicators used in the study are limited to the core variables 

available in the World Bank database, which prevents the inclusion of more detailed components of 

digital infrastructure such as cloud technologies, data centers, artificial intelligence based services, or 

5G networks. This constraint implies that the environmental impacts of digitalization are assessed only 

through broad aggregate indicators. 

Future research would benefit from expanding the analysis to include cross country comparisons, 

allowing a deeper understanding of how the environmental effects of digitalization differ depending on 

institutional quality, the share of renewable energy, energy efficiency policies, and economic 

development levels. The use of richer datasets capturing the micro components of digitalization for 

example data center energy use, the electricity demand of artificial intelligence applications, cloud 

infrastructure density, or the carbon footprint of 5G and 6G networks could significantly enhance the 

precision and depth of the results. Additionally, applying methodologies capable of evaluating causality 

such as quantile Granger causality, nonlinear ARDL, or wavelet quantile techniques would make it 

possible to examine the time varying and regime dependent structure of the digitalization environmental 

relationship within a more comprehensive analytical framework. 
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 This study investigates the global interconnectedness between digitalization and 

Environmental, Social, and Governance (ESG) performance using the Quantile-

on-Quantile (QQ) Connectedness approach. The analysis employs the S&P 500 

ESG Tilted Index, MSCI World ESG Leaders Index, and STOXX Global 

Digitalisation Index to evaluate the dynamic relationships between sustainability 

indices and market indicators of digitalization. The findings reveal strong and 

positive connectedness between digitalization and ESG indices, particularly at the 

lower and upper tails of the distribution. Moreover, sustainability indices 

generally act as dominant transmitters toward digital technology indices, whereas 

digitalization indices occasionally influence ESG indices during specific periods. 

These results indicate that sustainability-driven investment flows play a defining 

role in shaping the digital sector globally. The study contributes to the literature 

by providing a holistic and multidimensional assessment of the digitalization ESG 

nexus and offers strategic implications for investors, policymakers, and firms. 

Additionally, the findings highlight the critical importance of sustainable 

technology investments and digital transformation strategies for corporate 

performance.  

 

1. Introduction 

 

Digitalization has emerged as a key transformational force reshaping the Environmental, Social, and 

Governance (ESG) performance of firms. The literature provides strong evidence that digital 

technologies enhance sustainability practices at both the operational and corporate governance levels. 

The use of digital tools such as big data analytics, cloud computing, artificial intelligence, and 

automation enables firms to generate more accurate data, improve decision-making processes, and 

establish more robust sustainability strategies (Eriandani and Winarno 2023; Fang et al. 2023). This 

transformation not only optimizes processes but also improves governance quality and increases 

transparency toward stakeholders. 

The impact of digitalization on environmental performance is particularly pronounced, offering 

significant gains in energy efficiency, emissions reduction, and optimized resource use. Artificial 

intelligence, IoT, and sensor systems reduce carbon footprints across production and logistics, while 

enhancing the monitoring, measurement, and reporting of environmental impacts (Zhou and Liu 2023; 

Lu et al. 2024). Digitalized supply chains further strengthen traceability, resulting in improvements in 
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waste management, green procurement, and environmental risk mitigation (Tian et al. 2025; Chen et al. 

2024a). Accordingly, digital transformation is closely aligned with environmental sustainability 

strategies. The effects of digitalization are also evident in the social and governance dimensions. In the 

social domain, digital tools offer firms significant advantages in enhancing worker safety, improving 

operational processes, protecting consumer rights, and safeguarding data privacy (Zhao et al. 2024; 

Wang and Esperança 2023). In governance, blockchain, automated auditing mechanisms, and digital 

reporting systems strengthen corporate transparency, enhance accountability, and reduce ethical risks 

(Moro-Visconti 2022; Agag et al. 2025). Thus, digitalization functions as a critical lever that enhances 

social responsibility and governance quality. 

Finally, the literature emphasizes that digital transformation strengthens ESG performance not only 

directly but also indirectly through innovation capacity and dynamic capabilities. Digital tools enhance 

firms’ ability to generate green innovation, establish sustainable supply chains, improve corporate risk 

management, and create long-term value (Su et al. 2023; Zhong et al. 2023). Several studies further 

show that firms with stronger ESG performance are more likely to adopt digital solutions and that the 

relationship between ESG and digitalization is mutually reinforcing (Zhao et al. 2023; Cheng and Li 

2025). Taken together, these findings clearly demonstrate that digitalization represents a strategic and 

holistic transformation mechanism that enhances firms’ ESG performance. 

The strengthening of sustainability and ESG performance through digitalization can be explained 

indirectly, rather than directly, by the mechanisms proposed in Agency Theory and Dynamic 

Capabilities Theory, since the ESG concept did not exist when these theories were originally developed. 

Agency Theory argues that information asymmetry and monitoring problems between managers and 

owners can be reduced through technological tools (Jensen and Meckling 2019; Fama and Jensen 1983). 

Digital reporting, data transparency, and traceability systems enhance the monitoring of managerial 

behavior in line with the theory’s predictions, thereby increasing accountability, which corresponds to 

the governance dimension of today’s ESG framework.  

On the other hand, Dynamic Capabilities Theory emphasizes that firms must develop agile, learning, 

and innovative capacities to remain competitive (Teece et al. 1997). Digital technologies provide firms 

with new capabilities in areas such as environmental efficiency, process optimization, supply chain 

traceability, and stakeholder engagement, indirectly supporting sustainable performance. Therefore, 

although ESG did not exist when these theories were formulated, the mechanisms they propose, such as 

transparency, monitoring, innovation, and adaptive capability, offer a strong theoretical foundation for 

explaining how digitalization enhances ESG performance today. 

The primary objective of this study is to investigate the dynamic interdependence between 

sustainability indicators and digitalization financial markets at the global level. In this context, the study 

examines the connectedness structure among the S&P 500 ESG Tilted Index (SPXETUP) and the MSCI 

World ESG Leaders Index (MIWO00L2TNUS), which proxy ESG performance, and the STOXX 

Global Digitalisation USD Price Index (IXDIGITK), which represents the performance of digitalization 

sectors. Together, these indices offer an integrated framework for assessing the financial implications 

of sustainability investment strategies alongside the evolving market dynamics of the digital economy. 

To achieve this objective, the study adopts the Quantile-on-Quantile (QQ) Connectedness framework 

proposed by Gabauer and Stenfors (2024), which enables the examination of dependence structures 

across the entire conditional distribution rather than being restricted to average effects.  

The Quantile-on-Quantile (QQ) Connectedness approach facilitates the identification of 

asymmetries, regime dependent interactions, and quantile spillover dynamics between sustainability and 

digitalization markets under varying market conditions. In particular, it captures how the magnitude and 

direction of connectedness evolve during tranquil periods as well as during episodes of heightened 

volatility and extreme market movements. By employing this advanced connectedness methodology, 

the study extends the existing literature by providing a more comprehensive depiction of market 

sensitivity and risk transmission mechanisms between sustainability and digital transformation 

indicators. Accordingly, the analysis contributes to a deeper understanding of how sustainability 

financial markets and digitalization sectors interact under different market regimes, thereby offering 

valuable insights into the structural linkages that shape global financial dynamics. 

Although the existing literature provides extensive evidence on the effects of digitalization on firm 

level ESG performance, the interconnectedness between sustainability indicators and digitalization 

market indices at the global level remains largely unexplored. Prior studies predominantly rely on micro 
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level firm data, leaving the macro-financial comovement between ESG and digitalization indices, the 

direction and intensity of shock transmission, and the underlying cross market dependency structure 

insufficiently examined. Consequently, the interaction between sustainability financial markets and 

digitalization market segments has not yet been systematically analyzed within a unified empirical 

framework. 

In this context, the present study contributes to the literature by providing the first empirical 

investigation of the dynamic connectedness between global ESG market indices (SPXETUP and 

MIWO00L2TNUS) and a digitalization market index (IXDIGITK). Beyond its empirical scope, the 

study also advances the methodological frontier by employing the Quantile-on-Quantile (QQ) 

Connectedness approach proposed by Gabauer and Stenfors (2024). Unlike conventional connectedness 

frameworks that focus on average relationships, this approach enables the examination of dependence 

structures across the entire conditional distribution, thereby capturing asymmetries, regime dependent 

interactions, and quantile specific spillover dynamics. In doing so, it allows for a clear distinction 

between connectedness patterns prevailing during tranquil market conditions and those observed during 

periods of heightened volatility or market stress. By adopting this quantile connectedness perspective, 

the study offers a more comprehensive depiction of cross market dynamics between sustainability and 

digital financial markets, contributing both theoretically and methodologically to the existing literature.  

From a practical standpoint, the findings carry important implications for multiple stakeholders. For 

investors, identifying the direction and intensity of shock spillovers between sustainability indices and 

digitalization indices is essential for effective portfolio diversification, risk management, and asset 

allocation strategies. For policymakers, understanding how digital transformation interacts with 

sustainability-oriented financial structures provides valuable insights for the formulation of green 

finance policies and digital economy regulations. For firms, insights into the degree of synchronization 

between digitalization-driven sectoral movements and ESG market performance offer strategic guidance 

for aligning sustainability initiatives with digital transformation processes. Accordingly, the study not 

only addresses a significant gap in the literature but also enhances the understanding of market dynamics 

at the intersection of sustainable finance and the digital economy. 

This study consists of five sections. In the second section, the existing research on the relationship 

between digitalization and ESG is comprehensively summarized. In the third section, the dataset used 

in the study and the methodology based on the QQ Connectedness approach are introduced in detail. In 

the fourth section, the dynamic interaction between ESG indices and the digitalisation-themed index is 

analysed using the QQ Connectedness method. In the final section, conclusions are drawn based on the 

findings, and several recommendations are developed for investors, policymakers, and market 

participants. 

 

2. Digitalization and ESG 

 

The literature on the relationship between digitalization/digital transformation and ESG performance 

is grounded in the assumption that digital technologies can generate ESG outcomes by rendering firm 

level processes data driven, thereby enabling the measurement and reduction of environmental impacts, 

enhancing the traceability of social practices, and increasing the transparency of governance 

mechanisms. Within this framework, digitalization contributes to ESG performance through channels 

such as improving resource efficiency, optimizing processes to reduce emissions and waste, enhancing 

reporting quality, and strengthening accountability toward stakeholders (Zhou and Liu 2023; Su et al. 

2023; Lu et al. 2024; Li et al. 2024; Yang et al. 2024; Liu et al. 2024). The ESG value creation of 

digitalization is also discussed through its role in firm valuation and the market value of digital intangible 

assets (e.g., data, software, and platform ecosystems), with the argument that ESG strategies, when 

combined with digital transformation, can generate stronger outcomes through valuation channels 

(Moro-Visconti 2022). 

A substantial share of empirical findings converges on the conclusion that digital transformation 

enhances ESG performance. Increases in firms’ levels of digitalization have been shown to improve 

ESG scores, a result that has been repeatedly documented using different datasets and model 

specifications, particularly within the Chinese context (Fang et al. 2023; Zhao and Cai 2023; Zhong et 

al. 2023; Wang et al. 2023a; Wang and Esperança 2023; Lu et al. 2024; Li et al. 2024; Zheng and Bu 
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2024; Liu et al. 2024). This stream of research argues that digitalization strengthens ESG performance 

not only through environmental channels but also by enhancing occupational health and safety, 

employee welfare, and the monitoring of supplier standards in the social dimension, as well as by 

improving internal control, risk management, and reporting quality in the governance dimension 

(Eriandani and Winarno 2023; Zhao et al. 2024; Peng et al. 2023). In this context, digitalization has been 

conceptualized in some studies as a transformational capability that "unlocks sustainable value", 

suggesting that digital transformation, when combined with corporate strategy and implementation 

frameworks, systematically enhances ESG performance (Kwilinski et al. 2023). 

Mechanism studies emphasize intermediate channels to explain the digital transformation and ESG 

relationship. The dynamic capabilities perspective demonstrates that digital transformation indirectly 

improves ESG performance by enhancing organizational learning, reconfiguration, and agility 

capacities required for adapting to environmental and social objectives (Su et al. 2023). The mediating 

role of green innovation further indicates that digital transformation strategies stimulate environmentally 

friendly product and process innovations, which subsequently translate into improved ESG outcomes 

(Zhao et al. 2023). In manufacturing contexts, innovation capabilities and servitization have been shown 

to jointly drive ESG performance, with digital transformation reinforcing these components and thereby 

contributing to sustainability outcomes (Chen and Wang 2024). In parallel, the complementary 

relationship between digital leadership and ESG management highlights the managerial capacity 

dimension of digital transformation by linking it to organizational innovation and sustainability 

outcomes (Niu et al. 2022). 

The literature also differentiates the digitalization and ESG nexus across sectors. In the energy and 

utilities sectors, digitalization and ESG have been found to jointly influence financial performance, with 

sectoral characteristics such as capital intensity, regulatory pressure, and carbon costs strengthening this 

relationship (Morea et al. 2025). In manufacturing industries, digital transformation enhances ESG 

responsibility performance, and the digitally empowered ESG approach has been discussed using 

concepts such as "DESG" (Wang et al. 2023; Wang et al. 2023a). In the logistics sector, digitalization 

is argued to play a performance-enhancing role for ESG through competitiveness, operational efficiency, 

and stakeholder trust (Fan et al. 2025). Evidence from high stakeholder intensive fields such as 

healthcare further suggests that ESG and digital transformation can be jointly leveraged to build 

sustainable models (Sepetis et al. 2024). Findings from the telecommunications sector complement these 

sector explanations by demonstrating that digitalization supports ESG transformation (Vetrova et al. 

2022). 

Supply chain digitalization constitutes a rapidly expanding substream of the literature. Empirical 

evidence across different countries and samples shows that supply chain digitalization improves 

corporate ESG performance through enhanced traceability, data integrity, coordination, and risk 

management (Chen et al. 2024a; Tian et al. 2025). In this context, supply chain resilience emerges as a 

key mediating mechanism, as digital transformation strengthens firms’ ability to withstand supply 

shocks and operational vulnerabilities, leading to improvements in ESG performance (Zhang and Huang 

2024). Policy designs indicate that institutional frameworks such as supply chain innovation initiatives 

and digitalization pilot programs can influence ESG outcomes through supply chain digitalization (Zhu 

and Zhang 2024). Particularly in emerging economies, the decarbonization of supply chains requires 

multi level analyses of the interaction between regulation, digitalization, and ESG (Okeke 2025). 

Broader conceptual discussions, such as "ESG 2.0", further suggest that digitalization can evolve into a 

platform that scales sustainability outcomes (Zimin et al. 2024). 

Financial channels are also prominent in the digitalization and ESG literature. Studies on digital 

finance and corporate ESG show that improved access to finance, enhanced transparency, and reduced 

monitoring costs can lead to better ESG performance (Mu et al. 2023). Evidence that digital 

transformation jointly affects market performance and ESG performance supports the view that 

digitalization represents a "dual-output" strategic capability (Wang and Esperança 2023; Zheng and Bu 

2024; Farinha and de Fátima Pina 2025; de bem Machado et al. 2025; Li et al. 2025). From a productivity 

perspective, the relationship between digitalization, ESG performance, and total factor productivity 

underscores the complementarity between sustainability and efficiency (Geng et al. 2025). Findings on 

digital trade further indicate that transparency, innovation, and internationalization channels associated 
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with digitalization can enhance ESG performance by strengthening market integration and openness (Li 

et al. 2025a).  

The literature does not confine the direction of the relationship to a unidirectional framework. 

Evidence that ESG ratings can stimulate digital technology innovation suggests that ESG may act as a 

determinant of digital transformation (Hao et al. 2025). Similarly, studies reporting that ESG 

performance influences corporate digital transformation indicate that causality may also operate in the 

reverse direction (Cheng and Li 2025). These findings imply the presence of simultaneity and feedback 

mechanisms within the digitalization-ESG nexus and call for more robust empirical identification 

strategies.  

Institutional regulations and governance behaviors further highlight the conditional nature of the 

digital transformation and ESG relationship. Quasi natural experiment designs based on environmental 

regulations and institutional frameworks examine the ESG effects of digital transformation using more 

causal approaches (Chen et al. 2024). The joint consideration of digital transformation and governance 

practices such as earnings management reveals that ESG performance interacts with reporting incentives 

and managerial behaviors (Wang and Hou 2024). The linkage between regional digitalization levels and 

firm ESG performance underscores the critical role of digital infrastructure and regional technology 

ecosystems in shaping corporate ESG outcomes (Li and Zhu 2024). Moreover, from a resource 

efficiency perspective, digitalization plays a macro-level role in improving alignment with ESG 

objectives by enhancing the efficiency of resource utilization within the digital economy (Zhou and Liu 

2023). 

The literature also emphasizes that the relationship between digitalization and ESG may vary 

according to different configurations of corporate digital technology sets. It is argued that heterogeneous 

combinations of applied digital technologies and implementation scenarios can generate differentiated 

ESG outcomes (Chen et al. 2025). From an organizational perspective, digitization paths are considered 

decisive in improving ESG performance, highlighting that digital transformation is not merely a 

technological investment but also an issue of organizational design and process standardization (Zhao 

et al. 2024). Studies employing artificial intelligence, particularly interpretable large language model 

approaches, suggest new methodological opportunities for measuring and explaining the digitalization–

ESG relationship by jointly evaluating digitalization outcomes and ESG strategies (Kou et al. 2025). In 

the context of corporate decarbonization, digital transformation and ESG are also argued to create 

synergies that strengthen emissions reduction performance (Sun et al. 2025). 

Bibliometric and systematic review studies indicate that research on digitalization and ESG has 

expanded rapidly and diversified thematically, especially after 2023. Bibliometric analyses at the ESG 

and digitalization intersection report that dominant themes include supply chain digitalization, 

innovation, sectoral applications, governance quality (Tan et al. 2025; Kozar and Bolimowski 2025). 

Systematic reviews examining the contribution of digital ESG to the Sustainable Development Goals 

integrate digital transformation with resilience and sustainable development objectives at both 

institutional and policy levels (Kumar and Shah 2025). Evidence from different business contexts further 

confirms that the potential of digitalization to enhance ESG performance is conditioned by sectoral and 

organizational characteristics (Agag et al. 2025). A recent integrative review also synthesizes 

contemporary developments, case evidence, and relational patterns related to improving ESG 

performance through digital transformation, highlighting the maturation of this research field (Yu et al. 

2026).  

Overall, the literature consistently demonstrates that digitalization generates significant 

improvements in ESG performance across environmental, social, and governance dimensions. Digital 

technologies support eco efficiency, reduce waste, enhance social well-being, and increase corporate 

accountability through improved data management and decision-making processes. In sum, the 

integration of digital transformation into corporate sustainability strategies serves as a powerful 

mechanism for achieving long term value creation and responsible business conduct across industries. 
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3. Data and methodology 

 

3.1. Data 

 

The study examines the connectivity of the S&P 500 ESG Tilted Index (SPXETUP), the MSCI 

World ESG Leaders Index (MIWO00L2TNUS), and the STOXX Global Digitalisation USD Price Index 

(IXDIGITK). In other words, the study aims to measure the interaction between indices based on ESG 

performance and digitalization financial market indicators on a global scale.  The S&P 500 ESG Tilted 

Index, the MSCI World ESG Leaders Index, and the STOXX Global Digitalisation USD Price Index 

are three important indicators used to measure the dynamics of sustainability and digital transformation 

in global financial markets. SPXETUP provides a sustainability view of the U.S. market by reweighting 

companies in the S&P 500 based on ESG criteria. The MSCI World ESG Leaders Index covers a broad 

pool of companies from both developed and emerging countries and includes firms that demonstrate 

strong ESG performance on a global scale. In contrast, IXDIGITK tracks the stock performance of 

companies operating in digitalisation sectors, reflecting market movements associated with the digital 

economy. When evaluated together, these three indices allow for a comprehensive analysis of the 

interaction between sustainability and digital transformation, cross sectoral interconnectedness, and 

market sensitivity. 

The daily data are collected from Refinitiv between April 6, 2020, and November 6, 2025, and the 

study period depends on data availability. The data series is transformed into a return series 
[𝐿𝑛(𝑃𝑡 − 𝑃𝑡−1) × 100]  to satisfy the stationarity requirement imposed by the Quantile-on-Quantile 

(QQ) approach methodology. The return series is demonstrated in Figure 1, and descriptive statistics of 

the return series are reported in Table 1.  Figure 1 illustrates that from 2020 to 2025, the three indices 

display generally stable return behaviour, but a significant market shock occurs in early 2025. The S&P 

500 ESG Tilted Index (SPXETUP) and the MSCI World ESG Leaders Index (MIWO00L2TNUS) 

exhibit similar behaviour, reflecting their common ESG focus, while the STOXX Global Digitalisation 

USD Price Index (IXDIGITK) demonstrates higher volatility and return potential. ESG investments 

react less frequently but more intensely to systemic events, while digital technology exhibits more 

frequent reaction. 

 

 
Figure 1. Return series of ESG and digitalisation indices 
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Table 1 shows that all mean values of indices are positive and above zero. The S&P 500 ESG Tilted 

Index (SPXETUP) has the highest mean value (0.074) and the second highest volatility (sd = 1.167), 

which shows the index’s growth potential and uncertainty risk.  The MSCI World ESG Leaders Index 

(MIWO00L2TNUS) has the second highest mean value (0.068) and the third highest volatility (sd = 0. 

972). The negative skewness of all indices indicates vulnerability to external shocks and downturns, and 

the high kurtosis values above three suggest the potential for extreme price movements. Moreover, the 

null hypothesis of the Jarque-Bera test (1980) null is rejected for all indices, highlighting that the indices 

are not normally distributed, and the unit root tests confirm that the indices are stationary. The 

correlation matrix indicates a positive relationship between all indices.  

 
Table 1. Descriptive statistics 

  SPXETUP MIWO00L2TNUS IXDIGITK 

Mean 0.074 0.068 0.053 

Median 0.102 0.086 0.120 

Maximum 9.253 5.842 7.669 

Minimum -6.189 -5.690 -6.082 

Std. Dev. 1.167 0.972 1.327 

Skewness -0.055 -0.129 -0.058 

Kurtosis 8.912 6.958 5.714 

Jarque-Bera 2030.890 913.594 428.473 

Probability 0.000 0.000 0.000 

Unit Root Tests 

ADF 
-39.618*** -34.293** -33.020*** 

0.000 0.000 0.000 

Philips-Perron 
-40.247*** -34.211** -32.875*** 

0.000 0.000 0.000 

Correlation Matrix 

SPXETUP 1.000   

MIWO00L2TNUS 0.932 1.000  

IXDIGITK 0.835 0.881 1.000 
Note: *** symbolizes significance at the 1% level. 

 

3.2. Methodology 

 

The study employed the QQ approach developed by Gabauer and Stenfors (2024) to investigate the 

relationship between the digitalisation index and the ESG market indices. Building upon the quantile 

connectedness approaches of Chatziantoniou et al. (2021) and Ando et al. (2022), this approach 

generalizes their methods through the integration of variable cross quantile interdependencies. As a first 

step in applying the methodology, quantile-level dependencies are obtained using the Quantile Vector 

Autoregressive model of order 𝑝, QVAR(p) formulated in Equation (1). 

 

𝑥𝑡  =  𝜇(𝜏)  +  ∑ 𝐵𝑗(𝜏) 𝑥𝑡−𝑗

𝑝

𝑗=1

 +  𝑢𝑡(𝜏) (1) 

 

In this specification,  𝑥𝑡 and 𝑥𝑡−𝑗 represent K-dimensional vectors of endogenous variables, with 𝜏 

capturing the quantile range [0, 1] and 𝑝 denoting the order of lags used in the QVAR framework. Here, 

𝜇(𝜏) refers to the K×1 conditional mean vector, 𝐵𝑗(𝜏)  to the K×K coefficient matrix, and 𝑢𝑡(𝜏)  to the 

K×1 error vector with a corresponding K×K variance-covariance matrix. As a subsequent step, the 

QVAR model is converted into a Quantile Vector Moving Average (QVMA) form using the Generalized 

Forecast Error Variance Decomposition (GFEVD) technique of Koop et al. (1996), developed by 

Gabauer and Stenfors (2024). According to Wold’s Decomposition Theorem, the QVAR process can be 

represented as a moving average of past shocks, as shown in Equation (2): 
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𝑥𝑡  =  𝜇(𝜏) + ∑ 𝐵𝑗(𝜏)𝑥𝑡−𝑗

𝑝

𝑗=1

 +  𝑢𝑡(𝜏) = 𝜇(𝜏) + ∑ 𝐴𝑗(𝜏) 𝑢𝑡−1(𝜏)

∞

𝑖=0

 (2) 

 

The formulation in Equation (2) demonstrates the effect of shocks originating from 𝑗 on the dynamics 

of 𝑖 across an F-step horizon. In this context, is specified as a K×1 unit vector with one in the ith element 

and zeros elsewhere. The formulation in Equation (3) demonstrates the effect of shocks originating from 

𝑗 on the dynamics of 𝑖 across an F-step horizon. In this context, 𝑒𝑖 is specified as a K×1 unit vector with 

one in the ith element and zeros elsewhere. The transmission of a disturbance originating in series 𝑗 to 

series 𝑖 is assessed using the F-step-ahead GFEVD, as formalized in Equation (3). 

 

𝜑𝑖←𝑗,𝜏
𝑔 (𝐹) =  

∑ (𝑒𝑖
′𝐴𝑓(𝜏)𝐻(𝜏)𝑒𝑗)

2𝐹−1
𝑓=0

𝐻𝑖𝑖(𝜏) ∑ (𝑒𝑖
′𝐴𝑓(𝜏)𝐻(𝜏)𝐴𝑓(𝜏)′𝑒𝑖)

𝐹−1
𝑓=0

, 𝑔𝑆𝑂𝑇𝑖←𝑗,𝜏(𝐹)  =  
𝜑𝑖←𝑗,𝜏

𝑔
(𝐹)

∑ 𝜑𝑖←𝑗,𝜏
𝑔

(𝐹)𝑘
𝑗=1

 (3) 

 

Following Diebold and Yilmaz (2012), the connectedness measure 𝜑𝑖←𝑗,𝜏
𝑔𝑒𝑛

 (𝐻), is scaled by the total 

of its corresponding row to 𝑔𝑆𝑂𝑇𝑖←𝑗,𝜏(𝐹), which underpins the directional TO/FROM connectedness 

metrics. The FROM index captures the incoming connectedness to series i, whereas the TO index 

measures its outgoing influence on the remaining variables, as formalized in Equations (4) and Equation 

(5). 

 

𝑆𝑖→•,𝜏
𝑔𝑒𝑛,𝑡𝑜

 =  ∑ 𝑔𝑆𝑂𝑇𝑘←𝑖,𝜏

𝐾

𝑘=1,𝑖≠𝑗

 (4) 

𝑆𝑖←•,𝜏
𝑔𝑒𝑛,𝑓𝑟𝑜𝑚

 =  ∑ 𝑔𝑆𝑂𝑇𝑖←𝑘,𝜏

𝐾

𝑘=1,𝑖≠𝑗

 (5) 

 

The net aggregate directional connectedness, as expressed in Equation (6), is obtained by subtracting 

the FROM measure from the TO measure for a given series. 

 

𝑆𝑖,𝜏
𝑔𝑒𝑛,𝑛𝑒𝑡

 =  𝑆𝑖→•,𝜏
𝑔𝑒𝑛,𝑡𝑜

 −  𝑆𝑖←•,𝜏
𝑔𝑒𝑛,𝑓𝑟𝑜𝑚

 (6) 

 

The condition 𝑆𝑖,𝜏
𝑔𝑒𝑛,𝑛𝑒𝑡

> 0 designates series 𝑖 as a net shock transmitter, while 𝑆𝑖,𝜏
𝑔𝑒𝑛,𝑛𝑒𝑡

< 0  

categorizes it as a net shock receiver. Finally, the adjusted TCI, bounded between 0 and 1 and developed 

by Chatziantoniou et al. (2021), is calculated using Equation (7). 

 

𝑇𝐶𝐼𝜏(𝐹)  =  
𝐾

𝐾 − 1
∑ 𝑆𝑖←•,𝜏

𝑔𝑒𝑛,𝑓𝑟𝑜𝑚

𝐾

𝑘=1

 ≡  ∑ 𝑆𝑖→•,𝜏
𝑔𝑒𝑛,𝑡𝑜

𝐾

𝑘=1

 (7) 

 

4. Empirical results 

 

The study employed 60-month rolling window quantile autocorrelation (QVAR) models with a six-

step forecasting horizon for both the ESG index and the digitalization index to examine the 

interconnection between them. The average dynamic connectedness results for the S&P 500 ESG Tilted 

Index (SPXETUP) and STOXX Global Digitalisation USD Price Index (IXDIGITK) pair are 

demonstrated in Figure 2.  The average dynamic connectedness quantiles range from 0.05 to 0.95 with 

intervals of 0.225 between consecutive quantiles. The intensity of blue coloration corresponds to the 

degree of interconnectedness, with darker tones signifying robust connections and lighter tones, fading 

to white, indicating minimal linkage. 

The results display that the peak average total connectedness (94%) for the S&P 500 ESG Tilted 

Index (SPXETUP) and STOXX Global Digitalisation USD Price Index (IXDIGITK), observed at a 

point in the distribution where the relationship is directly related quantiles, 𝜏1 = 0.05, 𝜏2 = 0.05. 
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Moreover, the total connectedness results are likewise observed to peak at the same quantile for 

remaining quantiles. For instance, the average total connectedness is 93.7% for the S&P 500 ESG Tilted 

Index (SPXETUP) and the STOXX Global Digitalisation USD Price Index (IXDIGITK) index at the 

95th quartiles. The total connectedness indices are generally higher at the directly related extreme 

quantiles (i.e., [𝜏1 = 0.95, 𝜏2 = 0.95] and [𝜏1 = 0.05, 𝜏2 = 0.05], representing the southwest and northeast 

corners) than at the reversely related extremes ([𝜏1 = 0.95, 𝜏2 = 0.05] and [𝜏1 = 0.05, 𝜏2 = 0.95], 

corresponding to the northwest and southeast corners). 

 

 
Figure 2. Quantile total connectedness indices for SPXETUP and IXDIGITK 

 

The average dynamic connectedness results for the MSCI World ESG Leaders index 

(MIWO00L2TNUS) and the STOXX Global Digitalisation USD Price Index (IXDIGITK) pair are 

displayed in Figure 3.  The results demonstrate that the peak average total connectedness (95.6%) for 

the MSCI World ESG Leaders index (MIWO00L2TNUS) and STOXX Global Digitalisation USD Price 

Index (IXDIGITK), observed at a point in the distribution where the relationship is directly related to 

quantiles, 𝜏1= 0.05, 𝜏2= 0.05. Moreover, the total connectedness results are likewise observed to peak 

at the same quantile for remaining quantiles. For example, the average total connectedness is 94.9% for 

the MSCI World ESG Leaders index (MIWO00L2TNUS) and the STOXX Global Digitalisation USD 

Price Index (IXDIGITK) index at the 95th quartiles. The total connectedness indices are generally higher 

at the directly related extreme quantiles (i.e., [𝜏1 = 0.95, 𝜏2 = 0.95] and [𝜏1 = 0.05, 𝜏2 = 0.05], 

representing the southwest and northeast corners) than at the reversely related extremes ([𝜏1 = 0.95, 𝜏2 = 

0.05] and [𝜏1 = 0.05, 𝜏2 = 0.95], corresponding to the northwest and southeast corners). 

 

 
Figure 3. Quantile total connectedness indices for SPXETUP and MIWO00L2TNUS 

 

Figure 4 plots the dynamic total connectedness indices (direct and inverse) and their differences 

(ΔTCI) to capture temporal patterns of parallel and counter directional interconnectedness for the S&P 
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500 ESG Tilted index (SPXETUP) and the STOXX Global Digitalisation USD Price index 

(IXDIGITK).  The results display that direct TCI exceeds reverse TCI, indicating a strong positive 

linkage between the series. 

The consistently negative ΔTCI values throughout the sample period indicate a strong unidirectional 

influence from the S&P 500 ESG Tilted index (SPXETUP) to the STOXX Global Digitalisation USD 

Price index (IXDIGITK). The dominance of the direct TCI suggests that the dynamics of the 

sustainability sector have a significant impact on the digital technology sector. The lack of reverse 

dominance suggests that developments in the digital sector do not significantly impact the sustainability 

index during this time frame. This likely reflects how sustainability mandates, green capital flows, and 

investor screening practices affect the tech-heavy index, rather than vice versa.  

 

 
Figure 4. Direct and reverse total connectedness indices for SPXETUP and IXDIGITK 

 

Figure 5  displays the dynamic total connectedness indices (direct and inverse) and their differences 

(ΔTCI) to capture temporal patterns of parallel and counter directional interconnectedness for the MSCI 

World ESG Leaders index (MIWO00L2TNUS) and the STOXX Global Digitalisation USD Price index 

(IXDIGITK).  The results indicate that direct TCI exceeds reverse TCI, suggesting a strong positive 

correlation between the series. 

The persistent dominance of the direct TCI from MSCI World ESG Leaders Index 

(MIWO00L2TNUS)  to the digital technology sector suggests a strong transmission channel driven by 

global sustainability trends. Negative ΔTCI values indicate that ESG market dynamics have a greater 

influence on digital technology firms than vice versa. This asymmetric impact may stem from increased 

regulatory, investment, and reputational pressures on tech firms to comply with ESG standards, while 

innovations in the tech sector have not yet significantly reshaped the overall composition of the ESG 

index. 

 

 
Figure 5. Direct and reverse total connectedness indices for SPXETUP and MIWO00L2TNUS 
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Lastly, the study examines net directional connectedness across quantiles, and Figure 6 presents the 

results of net directional connectedness between the S&P 500 ESG Tilted index (SPXETUP) and the 

STOXX Global Digitalisation USD Price index (IXDIGITK). A three-color scale is utilized in Figure 

6, with blue indicating elevated positive values, white reflecting neutral or near zero values, and red 

signifying negative extremes. Within the quantiles, positive values are associated with the S&P 500 

ESG Tilted index (SPXETUP), which functions as a net transmitter, while negative values correspond 

to the STOXX Global Digitalisation USD Price index (IXDIGITK), taking on that role. 

 

 
Figure 6. Net Quantile connectedness between SPXETUP and IXDIGITK 

 

The quantile net TCI heatmap reveals an asymmetric information transmission structure between the 

ESG-tilted equity market and the digital technology sector. While the SPXETUP index acts as a net 

transmitter during periods of low ESG performance and mid level digital performance, it becomes a net 

receiver when the digital sector is in high or low extremes. The most substantial influence occurs when 

SPXETUP is at its weakest (𝜏 = 0.05), highlighting the vulnerability of ESG indices to shocks 

originating in the technology sector. This supports the view that digital market dynamics exert nontrivial 

feedback effects on sustainability portfolios, particularly in volatile environments. 

Figure 7 illustrates the results of net directional connectedness between the MSCI World ESG 

Leaders index (MIWO00L2TNUS) and the STOXX Global Digitalisation USD Price index 

(IXDIGITK). Figure 7 employs a three color gradient, where blue denotes high (positive) values, white 

represents values near zero, and red corresponds to low (negative) values.  Within the quantiles, positive 

values are associated with the MSCI World ESG Leaders index (MIWO00L2TNUS), which acts as a 

net transmitter, while negative values correspond to the STOXX Global Digitalisation USD Price index 

(IXDIGITK), assuming that role. 

 

 
Figure 7.  Net Quantile connectedness between MIWO00L2TNUS and IXDIGITK 
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The quantile spillover structure indicates an asymmetric dependence between the MSCI World ESG 

Leaders Index (MIWO00L2TNUS) and the digital technology sector. At lower ESG quantiles and 

moderate levels of digital index performance, the ESG index acts as a strong net transmitter. However, 

across most moderate to high quantiles of the ESG index, it becomes a significant net receiver, especially 

when the digital sector is in its tails. This implies that under normal or booming ESG conditions, the 

digital technology sector plays a more influential role in transmitting shocks or information to ESG-

aligned assets. 

 

5. Concluding remarks and policy suggestions 

 

The findings of this study show that the relationship between sustainability and digitalization is 

strong but asymmetric, thereby supporting much of the current literature. Similar to many studies 

demonstrating that digital transformation improves ESG performance (Fang et al. 2023; Lu et al. 2024; 

Kwilinski et al. 2023), the results of this analysis confirm the presence of a highly dynamic 

interconnectedness between sustainability-themed indicators and digital technology markets. The 

observation that digitalization enhances corporate transparency, optimizes data processes, and supports 

technologies that reduce environmental impact (Zhou and Liu 2023; Su et al. 2023) aligns with the 

current study’s finding of deep integration between these domains. Additionally, the evidence showing 

that the digital sector can dominate sustainability markets during volatile periods (Wang and Esperança 

2023; Zhao et al. 2024) is clearly reflected in the current results. Conversely, in periods when 

sustainability-related policies and regulations strengthen, ESG indicators appear to exert a more 

influential role over the digital sector, which is consistent with studies emphasizing the market directing 

power of sustainability focused investor behavior (Agag et al. 2025; Morea et al. 2025). Thus, the 

findings demonstrate not only that the ESG-digitalization nexus is reciprocal, as indicated in the 

literature, but also that this relationship varies by context, period, and market conditions. 

The results reveal that the interaction between sustainability and digitalization markets does not 

follow a stable structure but instead varies over time and is highly sensitive to market shocks. The fact 

that the digital sector becomes a dominant actor over sustainability assets during turbulent periods 

suggests that rapid innovation cycles, artificial intelligence applications, developments in data security, 

and platform-economy dynamics directly shape ESG related investment behavior. Conversely, in 

periods when environmental and social responsibility regulations strengthen, sustainability indicators 

appear to play a more guiding and stabilizing role over digitalization markets. This reciprocal yet 

asymmetric structure reflects investors’ growing sensitivity to evolving sustainability norms, the 

increasing regulatory pressure faced by technology firms, and the rising degree to which green-transition 

expectations are priced into global markets. At the same time, the results indicate a mutual adjustment 

process: sustainability-linked assets increasingly benefit from digital innovation, while the digital sector 

simultaneously restructures itself in accordance with ESG principles and stakeholder expectations. 

The findings of this study offer important strategic implications for policymakers, investors, and 

firms operating at the intersection of sustainability and digitalization. The strong interdependence 

observed between sustainability and digitalization markets indicates that regulatory frameworks would 

benefit from more explicitly embedding ESG principles within digital finance, data governance, and 

artificial intelligence–related activities. Integrating sustainability considerations into technology-

oriented regulations may help mitigate sustainability related risks while enhancing transparency, 

particularly in sectors undergoing rapid digital transformation. From an investment perspective, the 

results suggest that portfolio construction and diversification strategies should extend beyond 

conventional ESG performance metrics to incorporate the cyclical behavior, volatility characteristics, 

and market influence of digitalization-oriented assets. As digital sector dynamics can exert a pronounced 

influence on sustainability focused portfolios during certain market conditions, explicitly accounting for 

these interactions within risk management and asset allocation frameworks may contribute to more 

resilient investment outcomes. 

At the firm level, the evidence highlights the relevance of adopting an integrated strategic orientation 

that aligns sustainability objectives with digital transformation initiatives. In line with existing findings 

that digitalization can enhance ESG performance, firms may improve their sustainability outcomes by 

systematically deploying digital technologies in areas such as carbon-emissions monitoring, supply 
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chain transparency, and resource efficiency management. Such integration enables more effective 

operationalization of sustainability goals while strengthening monitoring and reporting capabilities. The 

increasing prominence of sustainability norms within digitally intensive sectors further underscores the 

importance of robust ESG disclosure practices and sustainability innovation among technology firms. 

Regular reporting of environmental and social performance, together with investments in ESG’s 

technological solutions, may enhance market credibility and support long term value creation. More 

broadly, these practices can facilitate the transition toward a digital economy that is increasingly aligned 

with sustainability principles. 

This study examines the global digitalization and ESG connectedness based on three key indices 

(S&P 500 ESG Tilted Index, MSCI World ESG Leaders Index, and STOXX Global Digitalisation 

Index). However, since the analysis includes only these specific indices, it may not fully capture all 

digitalization dynamics or all components of ESG within the broader market. Future research may 

conduct a more detailed analysis of the relationship between digitalization strategies and ESG 

performance by employing more micro level datasets at the firm or sector level. In particular, studies 

measuring the effects of artificial intelligence investments, data analytics capacity, and sustainable 

technology applications on ESG scores would make a significant contribution to the literature. In 

addition, comparative analyses across different countries or regions can more clearly reveal the role of 

institutional structures, regulatory frameworks, and technological maturity levels in shaping 

connectedness. 
 

Declaration of competing interest  

 

The author declare that they have no known competing financial interests or personal relationships that 

could have appeared to influence the work reported in this paper. 

 

Acknowledgments  

 

The views expressed in this study are those of the author.  

 

References 

 

Agag, G., Aboul-Dahab, S., El-Halaby, S., Abdo, S., & Khashan, M. A. (2025). Leveraging 

digitalization to boost ESG performance in different business contexts. Sustainability, 17(15), 6899. 

https://doi.org/10.3390/su17156899  

Ando, T., Greenwood-Nimmo, M., & Shin, Y. (2022). Quantile connectedness: Modeling tail behavior 

in the topology of financial networks. Management Science, 68(4), 2401-2431. 

https://doi.org/10.1287/mnsc.2021.3984  

Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Interest rate swaps and the transmission 

mechanism of monetary policy: A quantile connectedness approach. Economics Letters, 204, 

109891. https://doi.org/10.1016/j.econlet.2021.109891  

Chen, D., & Wang, S. (2024). Digital transformation, innovation capabilities, and servitization as drivers 

of ESG performance in manufacturing SMEs. Scientific Reports, 14(1), 24516. 
https://doi.org/10.1038/s41598-024-76416-8  

Chen, L., Chen, Y., & Gao, Y. (2024). Digital transformation and ESG performance: A quasinatural 

experiment based on China’s environmental protection law. International Journal of Energy 

Research, 2024(1), 8895846. https://doi.org/10.1155/2024/8895846  

Chen, S., Leng, X., & Luo, K. (2024a). Supply chain digitalization and corporate ESG 

performance. American Journal of Economics and Sociology, 83(4), 855-881. 

https://doi.org/10.1111/ajes.12596  

https://doi.org/10.3390/su17156899
https://doi.org/10.1287/mnsc.2021.3984
https://doi.org/10.1016/j.econlet.2021.109891
https://doi.org/10.1038/s41598-024-76416-8
https://doi.org/10.1155/2024/8895846
https://doi.org/10.1111/ajes.12596


N. Balcı    Journal of Sustainable Digital Futures 2025 1(2) 115-131 

128 

Chen, Y., Qu, Y., & Zhu, Q. (2025). Digital transformation for corporate ESG performance: 

Configurations of applied digital technologies and digital technology application 

scenarios. Industrial Management & Data Systems, 125(9), 2665-2692. 

https://doi.org/10.1108/IMDS-10-2024-1014  

Cheng, Y., & Li, H. (2025). The impact of ESG performance on corporate digital 

transformation. Environment, Development and Sustainability, 1-28. 

https://doi.org/10.1007/s10668-025-06012-x  

de bem Machado, A., Pesqueira, A., Santos, J. R. D., Sacavém, A., & Sousa, M. J. (2025). ESG and 

digital transformation in organizations. In Environmental, social, governance and digital 

transformation in organizations (pp. 1-32). Cham: Springer International Publishing. 
https://doi.org/10.1007/978-3-031-86079-9_1  

Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement 

of volatility spillovers. International Journal of Forecasting, 28(1), 57-66. 

https://doi.org/10.1016/j.ijforecast.2011.02.006  

Eriandani, R., & Winarno, W. A. (2023). ESG and firm performance: The role of digitalization. Journal 

of Accounting and Investment, 24(3), 993-1010. https://doi.org/10.18196/jai.v24i3.20044  

Fama, E. F., & Jensen, M. C. (1983). Separation of ownership and control. The Journal of Law and 

Economics, 26(2), 301-325. https://doi.org/10.1086/467037  

Fan, M., Tang, Y., Qalati, S. A., & Ibrahim, B. (2025). Can logistics enterprises improve their 

competitiveness through ESG in the context of digitalization? Evidence from China. The 

International Journal of Logistics Management, 36(1), 196-224. https://doi.org/10.1108/IJLM-05-

2023-0216  

Fang, M., Nie, H., & Shen, X. (2023). Can enterprise digitization improve ESG performance?. Economic 

Modelling, 118, 106101. https://doi.org/10.1016/j.econmod.2022.106101  

Farinha, J., & de Fátima Pina, M. (2025). Digital transformation in ESG programs: Understanding 

environmental, social, and governance factors. In Environmental, social, governance and digital 

transformation in organizations (pp. 33-49). Cham: Springer Nature Switzerland. 

https://doi.org/10.1007/978-3-031-86079-9_2  

Gabauer, D., & Stenfors, A. (2024). Quantile-on-quantile connectedness measures: Evidence from the 

US treasury yield curve. Finance Research Letters, 60, 104852. 

https://doi.org/10.1016/j.frl.2023.104852  

Geng, Y., Zheng, Z., Yuan, X., & Jiménez-Zarco, A. I. (2025). ESG performance and total factor 

productivity of enterprises: The role of digitization. Research in International Business and Finance, 

102920. https://doi.org/10.1016/j.ribaf.2025.102920  

Hao, P., Alharbi, S. S., Hunjra, A. I., & Zhao, S. (2025). How do ESG ratings promote digital technology 

innovation?. International Review of Financial Analysis, 97, 103886. 

https://doi.org/10.1016/j.irfa.2024.103886  

Jensen, M. C., & Meckling, W. H. (2019). Theory of the firm: Managerial behavior, agency costs and 

ownership structure. In Corporate governance (pp. 77-132). Gower. Available at:  

https://www.taylorfrancis.com/chapters/edit/10.4324/9781315191157-9/theory-firm-managerial-

behavior-agency-costs-ownership-structure-michael-jensen-william-meckling 

Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate 

models. Journal of Econometrics, 74(1), 119-147. https://doi.org/10.1016/0304-4076(95)01753-4  

Kou, H., Tang, R., & Chen, N. (2025). Enterprise digitalization and ESG performance: Evidence from 

interpretable AI large language models. Systems, 13(9), 832. 
https://doi.org/10.3390/systems13090832  

Kozar, Ł. J., & Bolimowski, S. (2025). ESG and digital transformation: Bibliometric review. Procedia 

Computer Science, 270, 851-860. https://doi.org/10.1016/j.procs.2025.09.205  

https://doi.org/10.1108/IMDS-10-2024-1014
https://doi.org/10.1007/s10668-025-06012-x
https://doi.org/10.1007/978-3-031-86079-9_1
https://doi.org/10.1016/j.ijforecast.2011.02.006
https://doi.org/10.18196/jai.v24i3.20044
https://doi.org/10.1086/467037
https://doi.org/10.1108/IJLM-05-2023-0216
https://doi.org/10.1108/IJLM-05-2023-0216
https://doi.org/10.1016/j.econmod.2022.106101
https://doi.org/10.1007/978-3-031-86079-9_2
https://doi.org/10.1016/j.frl.2023.104852
https://doi.org/10.1016/j.ribaf.2025.102920
https://doi.org/10.1016/j.irfa.2024.103886
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315191157-9/theory-firm-managerial-behavior-agency-costs-ownership-structure-michael-jensen-william-meckling
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315191157-9/theory-firm-managerial-behavior-agency-costs-ownership-structure-michael-jensen-william-meckling
https://doi.org/10.1016/0304-4076(95)01753-4
https://doi.org/10.3390/systems13090832
https://doi.org/10.1016/j.procs.2025.09.205


N. Balcı    Journal of Sustainable Digital Futures 2025 1(2) 115-131 

129 

Kumar, S., & Shah, P. (2025). Digital ESG as a catalyst for achieving the sustainable development goals: 

A systematic review and bibliometric analysis of digital transformation for a resilient 

future. Sustainable Futures, 10, 101458. https://doi.org/10.1016/j.sftr.2025.101458  

Kwilinski, A., Lyulyov, O., & Pimonenko, T. (2023). Unlocking sustainable value through digital 

transformation: An examination of ESG performance. Information, 14(8), 444. 

https://doi.org/10.3390/info14080444  

Li, Y., & Zhu, C. (2024). Regional digitalization and corporate ESG performance. Journal of Cleaner 

Production, 473, 143503. https://doi.org/10.1016/j.jclepro.2024.143503  

Li, Y., Zheng, Y., Li, X., & Mu, Z. (2024). The impact of digital transformation on ESG 

performance. International Review of Economics & Finance, 96, 103686. 

https://doi.org/10.1016/j.iref.2024.103686  

Li, R., Zahra, K., Najam, H., & Jia, S. (2025). Examining the role of digitalization and ESG strategies 

in enhancing resilience and sustainable performance of SMEs. International Entrepreneurship and 

Management Journal, 21(1), 108. https://doi.org/10.1007/s11365-025-01105-5  

Li, P., Li, X., & Wu, Q. (2025a). Digitalization drives Sustainability: How digital trade enhances 

corporate ESG performance through innovation, internationalization and transparency. International 

Review of Economics & Finance, 104248. https://doi.org/10.1016/j.iref.2025.104248  

Liu, H., Duan, H., & Li, M. (2024). Enterprise digital transformation and ESG performance. Energy & 

Environment, 0958305X241246186. https://doi.org/10.1177/0958305X241246186  

Lu, Y., Xu, C., Zhu, B., & Sun, Y. (2024). Digitalization transformation and ESG performance: 

Evidence from China. Business Strategy and the Environment, 33(2), 352-368. 
https://doi.org/10.1002/bse.3494  

Morea, D., Iazzolino, G., Giglio, C., Bruni, M. E., Baldissarro, G., & Farinelli, E. (2025). The role of 

digitalization and ESG on financial performance: An empirical analysis on the Energy and Utilities 

sectors. PloS one, 20(2), e0314078. https://doi.org/10.1371/journal.pone.0314078  

Moro-Visconti, R. (2022). Digitalization and ESG-driven valuation. In The valuation of digital 

intangibles: Technology, marketing, and the metaverse (pp. 685-764). Cham: Springer International 

Publishing. https://doi.org/10.1007/978-3-031-09237-4_23  

Mu, W., Liu, K., Tao, Y., & Ye, Y. (2023). Digital finance and corporate ESG. Finance Research 

Letters, 51, 103426. https://doi.org/10.1016/j.frl.2022.103426  

Niu, S., Park, B. I., & Jung, J. S. (2022). The effects of digital leadership and ESG management on 

organizational innovation and sustainability. Sustainability, 14(23), 15639. 

https://doi.org/10.3390/su142315639  

Okeke, A. (2025). Decarbonizing supply chains in emerging economies: A multilevel analysis of 

regulation, ESG, and digitalization. Global Journal of Emerging Market Economies, 

09749101251387365. https://doi.org/10.1177/09749101251387365  

Peng, Y., Chen, H., & Li, T. (2023). The impact of digital transformation on ESG: A case study of 

Chinese-listed companies. Sustainability, 15(20), 15072. https://doi.org/10.3390/su152015072  

Sepetis, A., Rizos, F., Pierrakos, G., Karanikas, H., & Schallmo, D. (2024,). A sustainable model for 

healthcare systems: The innovative approach of ESG and digital transformation. Healthcare, 12(2), 

156. https://doi.org/10.3390/healthcare12020156  

Su, X., Wang, S., & Li, F. (2023). The impact of digital transformation on ESG performance based on 

the mediating effect of dynamic capabilities. Sustainability, 15(18), 13506. 
https://doi.org/10.3390/su151813506  

Sun, Y., Lu, Y., Wu, Y., Xu, C., & Davey, H. (2025). Synergizing ESG and digital transformation for 

corporate decarbonization. Business Strategy and the Environment. 
https://doi.org/10.1002/bse.70262  

https://doi.org/10.1016/j.sftr.2025.101458
https://doi.org/10.3390/info14080444
https://doi.org/10.1016/j.jclepro.2024.143503
https://doi.org/10.1016/j.iref.2024.103686
https://doi.org/10.1007/s11365-025-01105-5
https://doi.org/10.1016/j.iref.2025.104248
https://doi.org/10.1177/0958305X241246186
https://doi.org/10.1002/bse.3494
https://doi.org/10.1371/journal.pone.0314078
https://doi.org/10.1007/978-3-031-09237-4_23
https://doi.org/10.1016/j.frl.2022.103426
https://doi.org/10.3390/su142315639
https://doi.org/10.1177/09749101251387365
https://doi.org/10.3390/su152015072
https://doi.org/10.3390/healthcare12020156
https://doi.org/10.3390/su151813506
https://doi.org/10.1002/bse.70262


N. Balcı    Journal of Sustainable Digital Futures 2025 1(2) 115-131 

130 

Tan, Q. L., Hashim, S., & Zheng, Z. (2025). Environmental social governance (ESG) in digitalization 

research: A bibliometric analysis. SAGE Open, 15(1), 21582440241310953. 
https://doi.org/10.1177/21582440241310953  

Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic 

Management Journal, 18(7), 509-533. https://doi.org/10.1002/(SICI)1097-

0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z  

Tian, L., Tian, W., & Guo, M. (2025). Can supply chain digitalization open the way to sustainable 

development? Evidence from corporate ESG performance. Corporate Social Responsibility and 

Environmental Management, 32(2), 2332-2346. https://doi.org/10.1002/csr.3067  

Vetrova, M., Solovey, T., Arenkov, I., & Ivanova, D. (2022). The impact of digitalization on the 

telecommunications sector ESG transformation. In International scientific conference on digital 

transformation in industry: Trends, management, strategies (pp. 181-192). Cham: Springer Nature 

Switzerland. https://doi.org/10.1007/978-3-031-30351-7_15 

Wang, S., & Esperança, J. P. (2023). Can digital transformation improve market and ESG performance? 

Evidence from Chinese SMEs. Journal of Cleaner Production, 419, 137980. 

https://doi.org/10.1016/j.jclepro.2023.137980  

Wang, J., Hong, Z., & Long, H. (2023). Digital transformation empowers ESG performance in the 

manufacturing industry: From ESG to DESG. Sage Open, 13(4), 21582440231204158. 

https://doi.org/10.1177/21582440231204158  

Wang, H., Jiao, S., Bu, K., Wang, Y., & Wang, Y. (2023a). Digital transformation and manufacturing 

companies’ ESG responsibility performance. Finance Research Letters, 58, 104370. 

https://doi.org/10.1016/j.frl.2023.104370  

Wang, L., & Hou, S. (2024). The impact of digital transformation and earnings management on ESG 

performance: Evidence from Chinese listed enterprises. Scientific Reports, 14(1), 783. 

https://doi.org/10.1038/s41598-023-48636-x  

Yang, P., Hao, X., Wang, L., Zhang, S., & Yang, L. (2024). Moving toward sustainable development: 

The influence of digital transformation on corporate ESG performance. Kybernetes, 53(2), 669-687. 

https://doi.org/10.1108/K-03-2023-0521  

Yu, Y., Chan, H. L., & Cho, E. (2026). Enhancing ESG performance through digital transformation: 

Recent development, cases and relationships. Journal of Business Research, 202, 115763. 
https://doi.org/10.1016/j.jbusres.2025.115763  

Zhang, M., & Huang, Z. (2024). The impact of digital transformation on ESG performance: The role of 

supply chain resilience. Sustainability, 16(17), 7621. https://doi.org/10.3390/su16177621  

Zhao, X., & Cai, L. (2023). Digital transformation and corporate ESG: Evidence from China. Finance 

Research Letters, 58, 104310. https://doi.org/10.1016/j.frl.2023.104310 

 Zhao, Q., Li, X., & Li, S. (2023). Analyzing the relationship between digital transformation strategy 

and ESG performance in large manufacturing enterprises: The mediating role of green 

innovation. Sustainability, 15(13), 9998. https://doi.org/10.3390/su15139998  

Zhao, F., Han, Z., & Wang, L. (2024). Digitization path to improve ESG performance: A study on 

organizational perspectives. PloS one, 19(12), e0313686. 

https://doi.org/10.1371/journal.pone.0313686  

Zheng, X., & Bu, Q. (2024). Enterprise ESG performance, digital transformation, and firm performance: 

Evidence from China. Sage Open, 14(4), 21582440241291680. 

https://doi.org/10.1177/21582440241291680  

Zhong, Y., Zhao, H., & Yin, T. (2023). Resource bundling: How does enterprise digital transformation 

affect enterprise ESG development?. Sustainability, 15(2), 1319. 
https://doi.org/10.3390/su15021319  

https://doi.org/10.1177/21582440241310953
https://doi.org/10.1002/(SICI)1097-0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z
https://doi.org/10.1002/csr.3067
https://doi.org/10.1007/978-3-031-30351-7_15
https://doi.org/10.1016/j.jclepro.2023.137980
https://doi.org/10.1177/21582440231204158
https://doi.org/10.1016/j.frl.2023.104370
https://doi.org/10.1038/s41598-023-48636-x
https://doi.org/10.1108/K-03-2023-0521
https://doi.org/10.1016/j.jbusres.2025.115763
https://doi.org/10.3390/su16177621
https://doi.org/10.1016/j.frl.2023.104310
https://doi.org/10.3390/su15139998
https://doi.org/10.1371/journal.pone.0313686
https://doi.org/10.1177/21582440241291680
https://doi.org/10.3390/su15021319


N. Balcı    Journal of Sustainable Digital Futures 2025 1(2) 115-131 

131 

Zhou, H., & Liu, J. (2023). Digitalization of the economy and resource efficiency for meeting the ESG 

goals. Resources Policy, 86, 104199. https://doi.org/10.1016/j.resourpol.2023.104199  

Zhu, Y., & Zhang, Z. (2024). Supply chain digitalization and corporate ESG performance: Evidence 

from supply chain innovation and application pilot policy. Finance Research Letters, 67, 105818. 

https://doi.org/10.1016/j.frl.2024.105818  

Zimin, A., Sedova, N., & Pulyavina, N. (2024, January). ESG 2.0: Revolutionizing sustainability 

through the power of digitalization. In International workshop on cultural perspectives of human-

centered and technological innovations (pp. 273-282). Cham: Springer Nature Switzerland. 

https://doi.org/10.1007/978-3-031-77012-8_21  

https://doi.org/10.1016/j.resourpol.2023.104199
https://doi.org/10.1016/j.frl.2024.105818
https://doi.org/10.1007/978-3-031-77012-8_21


 
Journal of Sustainable Digital Futures 2025 1(2) 

Received 20 November 2025; Received in revised from 17 December 2025; Accepted 28 December 2025 

Available online 30 December 2025 

 

Journal of Sustainable Digital Futures 

journal homepage: https://jsdf.org.tr/ 

 
 

The impact of ICT, technological innovation, and digitalisation on achieving sustainable 

development goals in G20 economies  

 

Havva KOÇ1  

 

H I G H L I G H T S  

1 İstanbul Okan University, İstanbul, Türkiye, havva.koc@okan.edu.tr 

A R T I C L E   I N F O  A B S T R A C T  

Keywords: 

Digital transformation 

ICT exports 

Technological innovation 

Sustainable development 

G20 countries 

 Digital transformation exhibits a dual nature: while it acts as a catalyst for 

sustainable development through innovation, efficiency, and inclusion, it 

simultaneously generates new risks such as energy intensity, inequality, and 

digital dependency. This study examines the long-run relationship between 

information and communication technologies (ICTs), digitalisation, technological 

innovation, and economic growth in the context of sustainable development for 

14 G20 countries over the period 2000-2021. The analysis employs second-

generation panel data techniques that account for cross-sectional dependence, 

heterogeneity, and structural breaks. The Durbin-Hausman and Westerlund-

Edgerton cointegration tests confirm the existence of a long-term equilibrium 

relationship among the variables. Long-run coefficients are estimated by the 

Common Correlated Effects Mean Group (CCEMG) and Augmented Mean Group 

(AMG) models. The results indicate that digitalisation and economic growth have 

significant effects on sustainable development, whereas ICT exports and 

technological innovation display weaker linkages. The Dumitrescu-Hurlin panel 

causality test further reveals bidirectional causality between digitalisation and 

sustainable development, and unidirectional causality running from economic 

growth to sustainable development. Overall, the findings highlight the dual role 

of digital transformation as both a driver and a disruptor of sustainable 

development, emphasizing the need for balanced policy strategies that maximize 

digital benefits while minimizing sustainability risks assessment.  

 

1. Introduction 

 

Rapid advances in information and communication technologies have redefined the dynamics of 

economic growth and highlighted the digital dimension of sustainable development. Digitalisation 

creates potential for efficiency, innovation, and inclusiveness across a wide range of areas, from 

production processes to public administration. However, this transformation also brings challenges such 

as higher energy consumption, data-intensive production, income inequality, and the digital divide, all 

of which may hinder sustainable development. Therefore, digital transformation has a dual nature, acting 

both as a driver of sustainability and a source of new risks. 

This dual structure makes it necessary to analyse the economic, environmental, and social dimensions 

of digitalisation in an integrated framework. On one hand, digital technologies improve resource 

efficiency and reduce environmental pressures. On the other hand, growing energy demand and 
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electronic waste generation threaten environmental sustainability. Thus, the effect of digital 

transformation on sustainable development may differ depending on a country’s technological capacity, 

energy infrastructure, and quality of institutional governance. 

Recent research has shown that digitalisation positively influences economic performance, green 

innovation, and energy efficiency. Yet, these effects fluctuate over time due to structural breaks, policy 

changes, and technological inequalities. Hence, analysing the relationship between digital 

transformation and sustainable development requires methods that consider both long-term integration 

and cross-country heterogeneity. 

This study investigates the effects of ICT service exports (LNICT), digitalisation (LNDIJIT), 

technological innovation (LNTECIN), and economic growth (LNGDP) on sustainable development 

(SDG) in 14 G20 countries from 2000 to 2021. Second-generation panel data techniques, which account 

for structural breaks and country-specific differences, are employed to examine the dual nature of digital 

transformation from a sustainability perspective. 

The research problem stems from the limited empirical evidence on how digitalisation and ICT shape 

sustainable development both positively and negatively. There is a lack of comprehensive studies that 

explicitly account for structural breaks and national differences. This study seeks to answer the question: 

How do ICT, digitalisation, and economic growth influence sustainable development under structural 

breaks? 

The main objective is to present a balanced view of the positive and negative impacts of digital 

transformation on sustainable development. Accordingly, the study aims to provide policy implications 

that enhance the benefits of digitalisation while mitigating its potential risks. 

This research contributes to the literature by analysing the effects of digital transformation on 

sustainable development within the G20 context and under structural breaks. It jointly considers ICT, 

digitalisation, and technological innovation, offering a holistic perspective on the dynamics of 

sustainability. Moreover, it employs second-generation panel data methods (CIPS, Westerlund-

Edgerton, CCEMG, and AMG) to statistically capture cross-country heterogeneity. In doing so, it 

provides an original methodological and conceptual contribution to the digitalisation-development 

nexus. 

The remainder of the paper is structured as follows. Section 2 reviews the literature on the 

relationship between ICT, digitalisation, technological innovation, and sustainable development. 

Section 3 introduces the dataset, variables, and econometric methods used, followed by the empirical 

findings. Section 4 discusses the results in light of the existing literature. The final section presents the 

main conclusions and policy recommendations concerning the interaction between digital 

transformation and sustainable development. 

 

2. Literature review 

 

The rapid expansion of information and communication technologies (ICT) in the global economy 

has led to numerous studies exploring the interaction among economic growth, digitalization, and 

sustainable development. The literature has examined how digital transformation influences 

sustainability through production, trade, green innovation, and governance channels. In recent years, 

panel data-based research has quantitatively revealed the long-term effects of ICT on economic and 

environmental sustainability. 

Evidence supporting the notion that sustainable development can be fostered through digitalization 

and economic growth channels has been growing steadily. Studies covering the European Union (EU) 

and OECD countries confirm that digital technologies enhance economic performance and improve 

sustainability indicators (Bocean and Vărzaru 2023; Fernández-Portillo et al. 2019; Gürler 2023; 

Herman 2022). Digital transformation has been shown to strengthen GDP growth and employment via 

e-commerce, ICT services, and high-tech sectors, thereby directly contributing to development by 

boosting productivity. Research on ASEAN countries demonstrates that digitalization accelerates 

growth through openness and education expenditures (Nurdiana et al. 2023), while in South Asia digital 

financial inclusion reduces poverty and supports inclusive growth (Safdar et al. 2024). 

In a complementary line of inquiry, Cioacă et al. (2020) emphasize that digital transformation 

enhances competitiveness and sustainable development performance in EU economies by fostering 
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technological adaptation and green innovation. Similarly, Antoniuk and Davydenko (2024) highlight 

that leveraging digital technologies enhances inclusive growth by improving citizens’ access to quality 

services such as education and healthcare, thereby reinforcing the sustainable competitiveness of 

national economies. 

Likewise, studies conducted in China confirm the positive effects of the digital economy on income 

levels and development quality. Within the framework of the ''Broadband China'' policy, the expansion 

of digital infrastructure has been found to raise income levels while deepening income inequality in 

favor of high-skilled labor (Kong et al. 2023). This suggests that while the digital economy strengthens 

growth, it may also produce heterogeneous social effects. Analyses on OECD countries show that ICT 

and financial access simultaneously feed the bright and dark sides of digitalization; while supporting 

growth through production and export channels, they also raise ethical and security issues (Alraja et al. 

2023). At the same time, Ballı (2023) highlights the emerging challenges of digital transformation—

such as unemployment, cybersecurity, and intellectual-property concerns—and proposes solutions to 

mitigate the social and economic risks accompanying the transition toward a digital economy. 

The environmental and technological dimensions of digitalization have also been widely examined. 

Studies focusing on China and Belt-and-Road countries demonstrate that digital and technological 

progress has significant positive effects on sustainable growth and environmental performance (Zhao et 

al. 2022; Yang et al. 2022; Hao et al. 2023; Lei et al. 2024). Digitalization enhances energy efficiency, 

decarbonizes production processes, and strengthens green innovation capacity (Luo et al. 2023; 

Banelienė et al. 2023). In the EU context, empirical evidence further confirms that green innovation 

integrated with digital transformation fosters economic competitiveness and accelerates sustainable 

growth (Cioacă et al. 2020; Ahmed and Elfaki 2024). 

Other studies point out that the environmental impact of digitalization differs depending on income 

level, energy structure, and technological intensity. Balsalobre-Lorente et al. (2025) report that ICT and 

green technologies improve environmental quality in advanced economies but remain limited in 

emerging ones, and that the positive effect of digitalization on green innovation is strengthened by 

institutional capacity and financial scale (He et al. 2024; Zhang and Bilawal Khaskheli 2025). In 

addition, Chen and Xing (2025) show that digital trade promotes inclusive and green growth by 

expanding markets, reducing pollution from conventional trade, and lowering entry barriers for small 

and medium-sized enterprises-highlighting digital trade as a key driver of socially inclusive 

sustainability. 

A growing body of research emphasizes that ICT exports positively influence economic growth and 

development indicators across OECD and G20 countries (Gürler 2023; Bocean 2025). ICT exports 

increase value added by spreading knowledge-based services and enhancing competitiveness in the 

digital economy. Furthermore, digital service trade is reported to promote inclusive growth and improve 

SDG performance (Yeerken and Feng 2024; El Awady et al. 2025). Yet the environmental consequences 

of ICT exports remain underexplored, as most studies do not directly model the interaction between 

carbon emissions and sustainability objectives-revealing an open research gap on the long-term effects 

of digital openness on sustainable development. 

The social dimensions of ICT and digitalization have also been investigated in terms of governance 

and inequality. Digital transformation has been found to enhance social inclusiveness and income 

equality, particularly by reducing gender disparities (Shah and Krishnan 2024). Similarly, when 

financial inclusion and governance quality are jointly assessed, digital services are observed to boost 

inclusive growth in disadvantaged regions (Safdar et al. 2024). However, some scholars argue that 

digitalization may intensify social polarization due to high skill requirements and regional inequalities 

(Kong et al. 2023). Therefore, ensuring that digital transformation supports sustainable development 

requires strengthening regulatory frameworks, reducing infrastructure disparities, and promoting digital 

skills and literacy (Zhang et al. 2025; Georgieva and Aleksandrova 2025). 

This study addresses an important research gap and contributes to the existing literature. Although 

the existing studies have made significant contributions to understanding the nexus between 

digitalisation and sustainable development, several methodological and scope-related limitations 

remain. First, most of the literature relies on conventional panel models that ignore structural breaks, 

even though digital transformation has been strongly affected by events such as the 2001 crisis, the 2008 

global recession, the 2015 technology wave, and the 2020 pandemic. Second, few studies examine the 

impact of ICT exports on sustainable development; most focus solely on internet usage or digital access 



H. Koç    Journal of Sustainable Digital Futures 2025 1(2) 132-148 

135 

indicators. Third, comprehensive studies that integrate developed and emerging G20 economies while 

accounting for cross-country heterogeneity are limited. Accordingly, this study provides three original 

contributions to the literature: 

(i) It integrates ICT exports, digitalisation, technological innovation, and economic growth into a 

single framework to identify the multidimensional determinants of sustainable development. 

(ii) It tests long-run cointegration relationships under structural breaks and cross-sectional 

heterogeneity using the Westerlund-Edgerton (2008) and Durbin-Hausman (2008) approaches. 

(iii) It estimates robust long-run coefficients through CCEMG and AMG estimators and assesses 

bidirectional causal relationships using the Dumitrescu-Hurlin causality test. 

Through these features, the study offers one of the first panel-level empirical evidences on the effects 

of the digitalisation-ICT export-growth nexus on sustainable development under structural breaks and 

heterogeneous country structures. 
 

3. Data, methodology and finding 

 

The analysis was conducted for 14 G20 countries using annual data covering the period 2000-2021. 

The variables and their sources are presented in Table 1. 

 
Table 1. Definition and sources of variables 

Variables Description Source / Indicator Code 

SDG 

SDG Index Score (excluding sub-components). Represents 

countries’ performance toward achieving the Sustainable 

Development Goals. 

United Nations Sustainable 

Development Solutions Network 

(SDSN) 

LNICT 

ICT service exports (BoP, current US$). Includes computer 

and communications services (telecommunications, postal, 

courier) and information services. 

World Bank (WDI) 

BX.GSR.CCIS.CD 

LNTECIN 

Patent applications, nonresidents. Refers to worldwide 

patent applications filed by nonresidents through the PCT 

procedure or national offices. 

World Bank (WDI)  

IP.PAT.NRES 

LNDIJIT 

Individuals using the Internet (% of population). Measures 

the percentage of people using the Internet via any device in 

the last three months. 

World Bank (WDI) 

IT.NET.USER.ZS 

LNGDP 
GDP per capita (constant 2015 US$). Represents total 

income per person, adjusted for inflation to 2015 prices. 

World Bank (WDI) 

NY.GDP.PCAP.KD 
Note: All variables (except SDG) were transformed into their natural logarithmic form (LN) prior to estimation. 

 

In the model, SDG was defined as the dependent variable, while LNICT, LNDIJIT, LNTECIN, and 

LNGDP served as explanatory variables. The basic panel regression model can be expressed as follows 

in Equation (1): 

 

𝑆𝐷𝐺𝑖𝑡 = 𝛼𝑖 + 𝛽1𝐿𝑁𝐼𝐶𝑇𝑖𝑡 + 𝛽2𝐿𝑁𝑇𝐸𝐶𝐼𝑁𝑖𝑡 + 𝛽3𝐿𝑁𝐷𝐼𝐽𝐼𝑇𝑖𝑡 + 𝛽4𝐿𝑁𝐺𝐷𝑃𝑖𝑡 + 𝜀𝑖𝑡 (1) 

 

The descriptive statistics in Table 2 summarise the key properties of the variables used in the analysis. 

Each variable—SDG, LNDIJIT, LNTECIN, LNICT, and LNGDP—contains 294 observations. The 

mean value of SDG is 70.95, representing the widest range among the variables. Standard deviations 

vary between 1 and 8, indicating a moderate level of variability across the series. Skewness values show 

that SDG, LNDIJIT, and LNGDP are left-skewed, while LNTECIN and LNICT display more symmetric 

distributions. Kurtosis values hover around 3, except for LNDIJIT, which exhibits a leptokurtic 

distribution. The Jarque-Bera probabilities indicate that the normality assumption is rejected for most 

variables. To maintain a balanced panel structure, the following 14 countries were included in the 

analysis: Argentina (ARG), Brazil (BRA), Canada (CAN), China (CHN), France (FRA), Germany 

(DEU), India (IND), Japan (JPN), Mexico (MEX), Russia (RUS), South Africa (ZAF), South Korea 

(KOR), United Kingdom (GBR), and the United States (USA). 
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Table 2. Descriptive statistics 

Stats SDG LNICT LNTECIN LNDIJIT LNGDP 

Mean 70.95080 22.13449 9.844611 3.662322 9.623483 

Median 72.57642 22.25279 9.682614 4.121395 9.645209 

Maximum 83.14347 25.32314 12.72588 4.569596 11.01942 

Minimum 52.18668 17.37174 7.340836 -0.639546 6.628972 

Std. Dev. 7.571910 1.687972 1.230361 1.030044 1.075594 

Skewness -0.650223 -0.191806 0.261850 -1.613994 -0.793580 

Kurtosis 2.569842 2.095772 2.671898 5.156504 2.965381 

Jarque-Bera 22.98341 11.81863 4.678441 184.6126 30.87340 

Probability 0.000010 0.002714 0.096403 0.000000 0.000000 

Sum 20859.53 6507.539 2894.316 1076.723 2829.304 

Sum Sq. Dev. 16798.81 834.8299 443.5399 310.8701 338.9724 

Observations 294 294 294 294 294 

 

3.1. Cross-sectional dependence 

 

In panel data models, the presence of common shocks may lead to cross-sectional dependence in the 

error terms. This problem can invalidate inferences based on the standard covariance matrix and reduce 

the efficiency of estimators. The Lagrange Multiplier (LM) test developed by Breusch and Pagan (1980) 

is widely used to examine the presence of correlation among cross-sectional units. The Cross-Section 

Dependence (CD) test proposed by Pesaran (2004) is applicable to both balanced and unbalanced panels. 

The later versions of this test—CDw and CDw+—introduced by Pesaran (2015) and Pesaran et al. 

(2008)—provide more reliable results, particularly for panels with large N and small T. Greene (2018) 

provides a detailed explanation of how the correlation coefficients of residuals are calculated in these 

tests. Under this section, the Breusch-Pagan Lagrange Multiplier Test and the Pesaran CD Test are 

introduced. The hypotheses for both tests are formulated as follows: 

𝐻0: There is no cross-sectional correlation. 

𝐻1: There is cross-sectional correlation. 

Breusch and Pagan (1980) developed an LM-type test to detect the existence of correlation among 

cross-sectional units. The test can be applied to both balanced and unbalanced panels. The Breusch-

Pagan test statistic is defined as Equation (2): 

 

𝐿𝑀𝜌 =∑ ∑ 𝑇𝑖𝑗𝜌̂𝑖𝑗
2 ∼ 𝜒𝑁(𝑁−1)/2

2
𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1
 (2) 

 

In Equation (2), 𝑇𝑖𝑗 = min⁡(𝑇𝑖 , 𝑇𝑗); in a balanced panel, 𝑇𝑖𝑗 = 𝑇. Here, 𝜌̂𝑖𝑗 denotes the correlation 

coefficient between the residuals of units 𝑖 and 𝑗 (Greene 2008). It is computed as Equation (3): 

 

𝜌̂𝑖𝑗 =
∑ 𝜀𝑖𝑡𝜀𝑗𝑡

𝑇

𝑡=1

(∑ 𝜀𝑖𝑡
2𝑇

𝑡=1
)1/2(∑ 𝜀𝑗𝑡

2
𝑇

𝑡=1
)1/2

 (3) 

 

The 𝐿𝑀𝜌statistic follows an asymptotic chi-square distribution as 𝑇⁡ → ⁡∞ with 𝑁 fixed. However, it 

is not suitable for large 𝑁 panels. For this reason, a scaled version of the test statistic, shown in Equation 

(4), is used: 

 

𝑆𝐶𝐿𝑀𝜌 =
1

𝑁(𝑁 − 1)
∑ ∑ √𝑇𝑖𝑗𝜌̂𝑖𝑗 ∼ 𝑁(0,1)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1
 (4) 
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Pesaran (2004) proposed the CD test to examine cross-sectional dependence in both balanced and 

unbalanced panels. Under the null hypothesis of no dependence, the CD statistic is asymptotically 

normally distributed. The test can be applied to both fixed- and random-effects models and is based on 

the average of pairwise correlation coefficients calculated from individual regression residuals. The 

Pesaran CD test statistic is given in Equation (5): 

 

𝐶𝐷 = √
2

𝑁(𝑁 − 1)
∑ ∑ √𝑇𝑖𝑗𝜌̂𝑖𝑗 ∼ 𝑁(0,1)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1
 (5) 

 

Monte Carlo simulations have shown that the Pesaran CD test performs well even when 𝑁⁡ > ⁡𝑇. 

 
Table 3. Cross-sectional dependence tests 

Variables CD CDw CDw+ BP LM 

SDG 
42.057 124.480 33.613 1770.332 

(0.000***) (0.000***) (0.000***) (0.000***) 

LNICT 
34.627 90.147 40.136 1307.143 

(0.000***) (0.000***) (0.000***) (0.000***) 

LNTECIN 
6.104 56.368 41.793 851.452 

(0.000***) (0.000***) (0.000***) (0.000***) 

LNDIJIT 
40.847 117.395 62.945 1674.748 

(0.000***) (0.000***) (0.000***) (0.000***) 

LNGDP 
36.939 96.200 74.008 1388.807 

(0.000***) (0.000***) (0.000***) (0.000***) 

Note: CD, CDw, and CDw⁺ tests were developed by Pesaran (2004), Pesaran (2015), and Pesaran et al. (2008), respectively. ***, **, and * 

indicate significance at the 1%, 5%, and 10% levels. 

 

All p-values in Table 3 are statistically significant at the 1% level, indicating the existence of cross-

sectional dependence among all variables in the panel. The probability values for all tests are below 

0.05, confirming that cross-sectional dependence is present throughout the dataset. 

 

3.2. Homogeneity test 

 

In panel data analyses, the homogeneity test is applied to determine whether the parameters differ 

across countries or units. This test examines whether the slope coefficients are identical among cross-

sectional units. The first study addressing this issue was conducted by Swamy (1970), who proposed the 

following statistic to measure the variation of slope coefficients across units, as shown in Equation (6): 

 

𝑆̂ = ∑(𝛽̂𝑖 − 𝛽̂𝑊𝐹𝐸)
′

𝑁

𝑖=1

𝑋𝑖
′𝑀𝑥𝑋𝑖

𝜎̂𝑖
2 (𝛽̂𝑖 − 𝛽̂𝑊𝐹𝐸) (6) 

 

The approach of Swamy (1970) was later improved by Pesaran and Yamagata (2008) and introduced 

as the Delta (Δ) homogeneity test. According to this test, the following panel regression model is 

considered, as given in Equation (7): 

 

𝑌𝑖𝑡 = 𝛼 + 𝛽𝑖𝑋𝑖𝑡 + 𝜀𝑖𝑡 (7) 

 

In Equation (7), 𝛽𝑖 represents the slope coefficient that may vary across individual units. Based on 

this model, Pesaran and Yamagata (2008) defined the hypotheses of the homogeneity test as follows: 

𝐻0: 𝛽𝑖 = 𝛽 Slope coefficients are homogeneous. 

𝐻1: 𝛽𝑖 ≠ 𝛽 Slope coefficients are heterogeneous. 
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To test these hypotheses, Pesaran and Yamagata (2008) developed the following test statistics. For 

large samples, the test statistic is defined in Equation (8): 

 

Δ̂ = √𝑁(
𝑁−1𝑆̂ − 𝑘

√2𝑘
) (8) 

 

For small samples, the adjusted version of the statistic is expressed as Equation (9): 

 

Δ̃𝑎𝑑𝑗 = √𝑁(
𝑁−1𝑆̂ − 𝑘

√2𝑘
) (9) 

 

In Equation (9), 𝑁 denotes the number of cross-sectional units, 𝑆 represents the Swamy test statistic, 

and 𝑘 is the number of explanatory variables. Under the null hypothesis 𝐻0, the statistic follows an 

asymptotic standard normal distribution as (𝑁, 𝑇) → ∞ and √𝑁/𝑇 → 0. Pesaran and Yamagata (2008) 

note that this test provides reliable results in both large and small samples due to its asymptotic 

properties. 

 
Table 4. Homogeneity test results 

Test Δ  Δadj 

Pesaran-Yamagata (2008) 
–4.914 –6.500 

0.000*** 0.000*** 

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 

 

The test examines whether the effects of LNICT, LNTECIN, LNDIJIT, and LNGDP on SDG differ 

across countries. According to Table 4, the test statistics are significant at the 1% level (𝑝⁡ < ⁡0.01), 

indicating that slope coefficients vary among G20 countries. This result implies that the model 

parameters are heterogeneous across countries, reflecting differences in digitalisation, technology, ICT 

development, and economic size among the G20 economies. 

 

3.3. CIPS panel unit root test 

 

The CIPS (Cross-sectionally Augmented IPS) test developed by Pesaran (2007) is a second-

generation unit root test that accounts for cross-sectional dependence in panel datasets. This method 

extends the standard IPS test (Im et al. 2003) by including the cross-sectional means of the dependent 

variable and its first difference in the ADF regression. By doing so, it controls for common shocks and 

unobserved factor structures across countries. The basic model of the CIPS test is specified in Equation 

(10) as follows: 

 

Δ𝑦𝑖𝑡 = 𝑎𝑖 + 𝑏𝑖𝑦𝑖,𝑡−1 + 𝑐𝑖𝑦̄𝑡−1 + 𝑑𝑖Δ𝑦̄𝑡 + 𝜀𝑖𝑡 (10) 

 

In Equation (10), 𝑦̄𝑡 =
1

𝑁
∑ 𝑦𝑖𝑡
𝑁
𝑖=1  represents the cross-sectional mean, Δ denotes the difference 

operator, and 𝜀𝑖𝑡 is the error term. The terms 𝑦̄𝑡−1 and Δ𝑦̄𝑡 control for the impact of common factors, 

such as global shocks or synchronized trends across countries. The hypotheses of the test are defined as: 

𝐻0: 𝛽𝑖 = 0 All series contain a unit root (non-stationary). 

𝐻1: 𝛽𝑖 < 0 At least one series is stationary. 

For each cross-sectional unit, an individual CADF (Cross-sectionally Augmented Dickey–Fuller) 

statistic is estimated. The panel-level CIPS statistic is then obtained by averaging these individual CADF 

statistics, as shown in Equation (11): 

 

𝐶𝐼𝑃𝑆 =
1

𝑁
∑𝑡𝑖

𝐶𝐴𝐷𝐹

𝑁

𝑖=1

 (11) 
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In Equation (11), 𝑡𝑖
𝐶𝐴𝐷𝐹 denotes the t-statistic derived from the individual ADF regression of unit 𝑖. 

Pesaran (2007) demonstrated through Monte Carlo simulations that the CIPS test provides robust and 

reliable results even in panels with small 𝑁 and 𝑇. Therefore, the CIPS test is widely preferred for testing 

the stationarity of variables under the presence of cross-sectional dependence. 

 
Table 5. Panel unit root test results 

Variables CIPS I(0) CIPS I(1) 

SDG -1.981 -3.676*** 

LNICT -2.029 -2.617*** 

LNTECIN -1.934 -3.837*** 

LNDIJIT -1.916 -3.604*** 

LNGDP -1.609 -2.638*** 

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

As shown in Table 5, the results of the CIPS test indicate that all variables are integrated of order 

one, I(1). This finding suggests that the variables become stationary after first differencing, confirming 

their non-stationarity in levels. 

 

3.4. Panel cointegration test with structural breaks 

 

The Westerlund-Edgerton (2008) and Durbin-Hausman (2008) approaches propose a Lagrange 

Multiplier (LM) based method to test the existence of long-run cointegration relationships in panel data 

models. 

This test belongs to the class of second-generation panel cointegration tests as it accounts for both 

cross-sectional dependence and possible serial correlation among series. In addition, it applies the 

bootstrap resampling technique to reduce bias and improve reliability in small samples. The basic model 

is expressed in Equation (12) as follows: 

 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝑥𝑖𝑡
′ 𝛽𝑖 + 𝑧𝑖𝑡; ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧𝑖𝑡 = 𝑢𝑖𝑡 + 𝜇𝑖𝑡 , 𝜇𝑖𝑡 =∑𝜂𝑖𝑗

𝑡

𝑗=1

 (12) 

 

In Equation (12), 𝑦𝑖𝑡 denotes the dependent variable, 𝑥𝑖𝑡 represents the explanatory variables, 𝑧𝑖𝑡 is 

the error term, and 𝜇𝑖𝑡 stands for the stochastic trend component. The hypotheses of the test are defined 

as follows:  

𝐻0: 𝜎𝑖
2 = 0 Cointegration exists. 

𝐻1: 𝜎𝑖
2 > 0 No cointegration exists. 

This approach is an extension of the LM-based panel cointegration test initially developed by 

McCoskey and Kao (1998). The Durbin-Hausman (2008) test examines the null hypothesis of 

cointegration and employs bootstrap critical values to obtain accurate results in small samples. 

Westerlund and Edgerton (2008) further extended this framework by incorporating structural breaks 

and common factor dependence. The model allowing for breaks in both intercept and slope coefficients 

is given in Equation (13): 

 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝜂𝑖𝑡 + 𝛿𝑖𝐷𝑖𝑡 + 𝑥𝑖𝑡
′ 𝛽𝑖 + (𝐷𝑖𝑡𝑥𝑖𝑡)

′𝛾𝑖 + 𝑧𝑖𝑡; ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧𝑖𝑡 = 𝜆𝑖
′𝐹𝑡 + 𝑣𝑖𝑡 (13) 

 

In Equation (13), 𝐷𝑖𝑡 represents the structural break dummy, 𝐹𝑡 denotes common factors, and 𝜆𝑖 are 

factor loadings. The model thus allows for country-specific breakpoints that may occur at different times 

across cross-sections. The hypotheses of the Westerlund-Edgerton (2008) test are formulated as: 
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𝐻0: 𝜙𝑖 = 0 No Cointegration. 

𝐻1: 𝜙𝑖 < 0 Cointegration exists. 

The test statistics 𝜏𝑛 and 𝜙𝑛 follow a standard normal distribution, adjusted for structural breaks and 

common factors. Consequently, the test remains valid even when the timing of the breaks is unknown. 

The Westerlund-Edgerton (2008) approach improves upon the Westerlund (2005) test in two major 

respects: 

(i) it does not require prior knowledge of break dates, and  

(ii) its asymptotic distribution is independent of nuisance parameters, allowing for the use of fixed 

critical values. 

Applying both tests together enables a comprehensive assessment of cointegration relationships 

under heterogeneity and structural breaks. While the Durbin-Hausman (2008) test investigates whether 

a homogeneous cointegration relationship exists across the panel, the Westerlund-Edgerton (2008) test 

evaluates whether this relationship persists in the presence of structural breaks. 

 
Table 6. Panel cointegration test results 

Durbin-Hausman (2008) 

𝐝𝐡𝐠 𝐝𝐡𝐩 

1.808** -2.272 

(0,035) (0.988) 

Westerlund-Edgerton (2008) with Structural Breaks 

τₙ φₙ 

–2.992*** –3.349*** 

0.001 0.000 

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

As shown in Table 6, the group mean statistic of the Durbin-Hausman (2008) test (dhg= 1.808; 𝑝 = 

0.035) is significant at the 5% level, whereas the pooled statistic (dhp= –2.272; 𝑝 = 0.988) is not. This 

implies that a homogeneous cointegration relationship does not hold across the entire panel, but 

heterogeneous cointegration relationships may exist in some countries. For the Westerlund-Edgerton 

(2008) test with structural breaks, both 𝜏ₙ (–2.992; 𝑝 = 0.001) and 𝜑ₙ (–3.349; 𝑝 = 0.000) are significant 

at the 1% level, indicating a long-run cointegration relationship among the variables despite the presence 

of structural breaks. The results confirm that the cointegration relationship remains valid even after 

accounting for country heterogeneity and structural shifts. Estimated break dates for each country are 

presented in Table 7. 

 
Table 7. Estimated break dates 

Country Break Point Break Date Country Break Point Break Date 

ARG 2 ≈ 2001 JPN 16 ≈ 2015 

BRA 17 ≈ 2016 MEX 18 ≈ 2017 

CAN 17 ≈ 2016 RUS 15 ≈ 2014 

CHN 3 ≈ 2002 ZAF 3 ≈ 2002 

FRA 7 ≈ 2006 KOR 17 ≈ 2016 

DEU 4 ≈ 2003 GBR 6 ≈ 2005 

IND 9 ≈ 2008 USA 13 ≈ 2012 

 

As illustrated in Table 7, the findings confirm the existence of a long-run cointegration relationship 

among the variables, which remains valid despite the presence of structural breaks. Most estimated break 

dates cluster between 2001-2008 and 2015-2017, periods corresponding to global financial crises and 

waves of digital transformation across G20 economies. 
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3.5. CCEMG and AMG long-run estimation models 

 

In panel data analyses, second-generation estimators that account for cross-sectional dependence and 

heterogeneity enable more reliable estimation of long-run coefficients. In this context, two different 

second-generation panel estimators are employed in the study: CCEMG and AMG. 

The CCEMG estimator, developed by Pesaran (2006), addresses potential cross-sectional 

dependence caused by unobserved common factors and global shocks by including a vector of common 

effects (𝑓𝑡) and their loadings (𝜆𝑖) into the model. For each cross-sectional unit, the model is expressed 

as Equation (14): 

 

𝐴𝑖𝑡 = 𝛿𝑖 + 𝑑𝑡
′𝛾𝑖 + 𝜖𝑖𝑡 (14) 

 

In Equation (14), 𝑑𝑡 represents observed common effects, while 𝑓𝑡 (not explicitly shown) denotes 

unobserved common effects. The CCEMG method calculates the overall panel coefficient as the average 

of the coefficients obtained for each cross-section, as shown in Equation (15):  

 

𝛾𝐶𝐶𝐸𝑀𝐺
′ =

1

𝑁
∑𝛾𝑖

′

𝑁

𝑖=1

 (15) 

 

This approach preserves individual heterogeneity while mitigating the impact of cross-sectional 

dependence. It produces consistent results even in small samples by reducing the effects of global shocks 

such as financial crises or technological disruptions (Pesaran 2006; Pesaran and Tosetti 2011). 

The AMG estimator, introduced by Eberhardt and Bond (2009), similarly accounts for cross-sectional 

dependence and heterogeneity when estimating long-run coefficients across the panel. It extends the 

CCE-MG framework by incorporating a common dynamic process through a ''time-dummy trend'' that 

captures unobserved common components. The AMG estimator proposed by Eberhardt and Teal (2010) 

is expressed as Equation (16): 

 

𝐴𝑖𝑡 = 𝛽𝑖 + 𝛾𝑖
′𝐺𝑖𝑡 + 𝜆𝑡 + 𝑢𝑖𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛾𝐴𝑀𝐺

′ =
1

𝑁
∑𝛾𝑖

′

𝑁

𝑖=1

 (16) 

 

In Equation (16), 𝐺𝑖𝑡 denotes the vector of explanatory variables, and 𝜆𝑡 represents the common time 

effect across all units. This estimator provides robust long-run relationships, particularly for panels 

affected by common trends or structural changes (Eberhardt and Bond 2009; Eberhardt and Teal 2010). 

 
Table 8. Long-Run estimation results 

 CCEMG AMG 

Variables Coef. SE p-value Coef. SE p-value 

LNICT -0.546 0.387 0.158 –0.739* 0.397 0.063 

LNTECIN 0.410 0.497 0.409 0.373 0.647 0.564 

LNDIJIT -0.222 0.478 0.642 –0.364** 0.166 0.028 

LNGDP -1.151 1.744 0.509 –2.584*** 0.378 0.000 

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

According to the long-run estimation results presented in Table 8, the coefficients of LNICT and 

LNDIJIT are negative, LNTECIN is positive, and LNGDP is negative in both models. While none of 

the variables are statistically significant in the CCEMG model, digitalisation (DIJIT) and economic 

growth (GDP) are statistically significant in the AMG model. Therefore, in the long run, digitalisation 

and economic size are identified as the main determinants significantly affecting sustainable 

development (SDG) among G20 countries, with both exhibiting negative long-run effects. 
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3.6. Panel causality test 

 

The panel causality test developed by Dumitrescu and Hurlin (2012) allows for the analysis of the 

direction of causality between variables under a heterogeneous panel structure. This test is an extension 

of the classical Granger causality approach to panel data and can account for both cross-sectional 

dependence and heterogeneity across units. It is applicable in cases where either 𝑇 > 𝑁 (time dimension 

greater than cross-section) or 𝑁 > 𝑇, and it remains valid for unbalanced panels as well (Gholami, 

2006). The baseline model of the Dumitrescu-Hurlin test is expressed in Equation (17): 

 

𝑌𝑖𝑡 = 𝛼𝑖 +∑𝛾𝑖
(𝑘)
𝑌𝑖,𝑡−𝑘

𝐾

𝑘=1

+∑𝛽𝑖
(𝑘)
𝑋𝑖,𝑡−𝑘 + 𝜀𝑖𝑡

𝐾

𝑘=1

 (17) 

 

In Equation (17), 𝑖 = 1,… ,𝑁 denotes the cross-sectional units, 𝑡 = 1,… , 𝑇 denotes time, 𝐾 is the lag 

length, and 𝛼𝑖 ⁡represents the individual fixed effect. The model assumes a common lag order 𝐾 for all 

units in the panel. The hypotheses are formulated as follows: 

𝐻0: 𝛽𝑖
(𝑘)

= 0 No causality exists. 

𝐻1: 𝛽𝑖
(𝑘)

≠ 0 At least one unit exhibits causality. 

The panel-level test statistic is calculated by averaging the individual Wald statistics across all cross-

sections. Dumitrescu and Hurlin (2012) define two statistics, as shown in Equations (18) and Equation 

(19): 

 

𝑊𝑁,𝑇 =
1

𝑁
∑𝑊𝑖,𝑇

𝑁

𝑖=1

 (18) 

𝑍𝑁 =
√𝑁(𝑊𝑁,𝑇 − 𝑁−1∑ 𝐸(𝑊𝑖,𝑇))

𝑁

𝑖=1

√𝑁−1∑ 𝑉𝑎𝑟(𝑊𝑖,𝑇)
𝑁

𝑖=1

→
𝑁→∞

𝑁(0,1) (19) 

 

When the absolute value of 𝑍𝑁 exceeds the critical value, the null hypothesis 𝐻0 is rejected, 

indicating the existence of a causal relationship between the variables. 
 

Table 9. Dumitrescu-Hurlin panel causality tests 

 Null Hypothesis: W-Stat. Zbar-Stat. Prob. 

 LNICT ≠> SDG 4.47586 2.90368 0.0037 

 SDG ≠> LNICT 5.11365 3.76806 0.0002 

 LNTECIN ≠> SDG 2.76319 0.58256 0.5602 

 SDG ≠> LNTECIN 2.59226 0.35092 0.7257 

 LNDIJIT ≠> SDG 4.97793 3.58412 0.0003 

 SDG ≠> LNDIJIT 6.94289 6.24716 0.0000 

 LNGDP ≠> SDG 5.92445 4.86690 0.0000 

 SDG ≠> LNGDP 3.10728 1.04890 0.2942 

Note: The symbolic expression ''≠>'' means that variable X does not cause variable Y. Lags = 2. 

 

According to the results of the Dumitrescu-Hurlin (2012) panel causality test presented in Table 9, 

bidirectional causality is observed between LNICT and SDG, as well as between LNDIJIT and SDG. 

Additionally, a unidirectional causality running from LNGDP to SDG is identified. No statistically 

significant causal relationships are found among the other variable pairs. 
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4. Discussion 

 

The empirical findings of this study reveal the long-run effects of digitalisation, information and 

communication technologies (ICT), technological innovation, and economic growth on sustainable 

development. The results are interpreted based on the long-run estimations from the CCEMG and AMG 

models and the causality relationships identified by the Dumitrescu-Hurlin panel causality test. 

According to the long-run estimation results (Table 8), the coefficients of LNICT and LNDIJIT are 

negative, LNTECIN is positive, and LNGDP is negative in both models. In the AMG model, 

digitalisation (LNDIJIT) and economic growth (LNGDP) are statistically significant, indicating that 

digitalisation and economic size are the key long-term determinants of sustainable development. These 

findings are consistent with Bocean (2025) and Fernández-Portillo et al. (2019), who reported that 

digitalisation enhances sustainable development through improved economic performance in the 

European Union. However, the negative and statistically insignificant coefficient of ICT exports 

partially diverges from Zhao et al. (2022) and Gürler (2023). This discrepancy may arise from the 

heterogeneous nature of ICT impacts across G20 countries and the differing levels of technological 

openness among them. 

The significant negative coefficient of LNDIJIT aligns with Kong et al. (2023), who emphasized that 

digitalisation, while promoting economic growth, can exacerbate income inequality. This result implies 

that digital transformation does not always produce uniformly positive outcomes and may, in highly 

digitalised economies, negatively affect social sustainability by deepening inequality. Furthermore, the 

results of the Westerlund-Edgerton (2008) panel cointegration test with structural breaks (Table 6) 

confirm the existence of a long-run equilibrium relationship among the series despite structural shifts. 

This finding supports the conclusions of Balsalobre-Lorente et al. (2025) and Yang et al. (2022), both of 

which highlight that digitalisation and technological innovation reinforce the long-term balance between 

environmental sustainability and economic growth. 

The results of the Dumitrescu-Hurlin panel causality test (Table 9) reveal bidirectional causality 

between LNICT ↔ SDG and LNDIJIT ↔ SDG, and a unidirectional causality running from LNGDP 

→ SDG. These findings indicate a mutual and reinforcing relationship between digitalisation, ICT 

activities, and sustainable development, consistent with He et al. (2024) and Yeerken and Feng (2024). 

By contrast, no causality is observed for technological innovation (LNTECIN), suggesting that patent-

based indicators may have limited capacity to explain variations in sustainable development outcomes.  

Overall, the findings underscore the significant role of digitalisation and economic growth in driving 

sustainable development, while the effects of ICT exports and technological innovation vary depending 

on country heterogeneity and structural breaks. This pattern supports the literature on the dual nature of 

digital transformation, which can act as both an enabler and a disruptor of sustainability (Alraja et al. 

2023; Georgieva and Aleksandrova 2025). For G20 economies, ensuring that digitalisation contributes 

positively to sustainable development requires not only investments in digital infrastructure but also the 

strengthening of institutional capacity and the adoption of inclusive policy frameworks. 

The Sustainable Development Goals (SDG) index has a composite structure that includes economic, 

social, and environmental dimensions. Because of this, the overall relationship between digitalisation 

and sustainable development may hide different effects across these dimensions. Digitalisation can 

support economic and social sustainability by increasing efficiency, innovation, and inclusion. However, 

its environmental effect is mixed. Higher energy demand, data storage, and electronic waste can weaken 

the positive outcomes. Future studies should separate the SDG index into subdimensions. This would 

help identify whether digitalisation mainly improves economic or social goals, or whether it also 

supports environmental sustainability. 

The insignificant effect of ICT exports also needs more attention. This result may reflect major 

differences in digital trade capacity, innovation ecosystems, and infrastructure among G20 economies. 

In some countries, ICT exports create knowledge spillovers and improve competitiveness. In others, 

weak institutions or low innovation levels limit these gains. ICT exports may also have indirect effects 

through human capital or technology transfer, which aggregate indicators cannot fully capture. Future 

research could include new variables, such as digital intensity, e-commerce penetration, or digital service 

trade. These indicators would give a clearer and more balanced picture of how digital openness interacts 

with sustainability outcomes.  
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In short, the results highlight the need for a more detailed approach to measure the effects of 

digitalisation. Understanding which sustainability dimensions benefit the most will help policymakers 

design more focused and inclusive digital strategies. The following section presents the policy 

implications and future research directions derived from these findings. 

 

5. Conclusion 

 

This study examined the effects of ICT exports, digitalisation, technological innovation, and 

economic growth on sustainable development in G20 countries for the period 2000-2021. Second-

generation panel data methods were employed by considering cross-sectional dependence and structural 

breaks. The findings indicate the presence of heterogeneity among countries and suggest that the 

variables are sensitive to common shocks. The results confirm the existence of a long-run cointegration 

relationship among the variables. 

The Westerlund-Edgerton (2008) panel cointegration test with structural breaks shows that, despite 

structural changes, the variables move together in the long term. This implies that sustainable 

development maintains a long-run equilibrium relationship with the dynamics of digital transformation, 

technology, and economic growth. According to the long-run estimation results, digitalisation and 

economic size emerge as significant determinants of sustainable development. The negative coefficient 

of digitalisation suggests that, in some countries, the digital transformation has not produced the 

expected positive effects on sustainability. This may result from differences in technological 

advancement levels among G20 economies. The positive influence of economic growth highlights that 

achieving sustainable development goals is closely linked to financial capacity. 

The causality analysis reveals bidirectional relationships between ICT, digitalisation, and sustainable 

development, suggesting a mutually reinforcing interaction. This means that digital transformation 

supports sustainable development, while sustainability objectives, in turn, stimulate digitalisation. The 

unidirectional causality from economic growth to sustainable development indicates that growth serves 

as a prerequisite for sustainable progress. Overall, the results underline that digitalisation and economic 

growth are key drivers of sustainable development, while the effects of ICT exports and technological 

innovation vary depending on country-specific structural characteristics. This finding implies that digital 

transformation policies cannot be explained by a single model. Each country should design strategies 

consistent with its own technological capacity and institutional framework. 

 

6. Policy implications 

 

The findings of this study provide several important insights for policymakers seeking to harmonise 

digital transformation with sustainable development objectives in G20 economies. The results highlight 

that while digitalisation and economic growth are key drivers of sustainable development, their effects 

differ across countries due to technological capacity, institutional quality, and environmental policy 

frameworks. Therefore, digital transformation strategies must be aligned with long-term sustainability 

goals through multidimensional policy coordination. 

First, governments should pursue inclusive digital infrastructure development to ensure that the 

benefits of digitalisation reach all regions and social groups. Expanding broadband access, strengthening 

digital literacy programs, and closing the digital divide are crucial to achieving both social and economic 

sustainability. Second, technological innovation policies must explicitly incorporate environmental and 

social dimensions. Promoting green technologies, encouraging energy-efficient production systems, and 

linking patent incentives to sustainability-oriented outcomes can significantly improve resource 

efficiency and reduce environmental externalities. Third, to enhance the contribution of ICT to 

sustainable development, high value-added digital services should be prioritised. The digital economy 

must be integrated not only into production but also into education, governance, and public service 

delivery. ICT should be viewed as a transformative tool that fosters inclusive, resilient, and 

environmentally responsible growth. Fourth, economic growth strategies should be designed within an 

environmentally sensitive framework that promotes renewable energy investments, supports circular 

economy practices, and ensures responsible consumption. In this context, aligning growth targets with 
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sustainability principles will help reduce the trade-offs between digital expansion and environmental 

quality. 

Finally, the effectiveness of digitalisation depends on strong institutional and ethical frameworks. 

Policymakers must ensure transparent data governance, cybersecurity, and ethical AI use. Strengthening 

institutional capacity, promoting accountability, and adopting inclusive digital regulations are essential 

to sustaining the long-term balance between digital progress and social welfare. 

 

7. Limitations and directions for future research 

 

Although this study contributes to the understanding of the nexus between digitalisation and 

sustainable development, several limitations provide opportunities for further research: 

 Composite Nature of the SDG Index: The SDG index aggregates economic, social, and 

environmental dimensions. Future studies could decompose it to identify which specific sustainability 

pillars are most affected by digitalisation and ICT exports. 

 Measurement of Digitalisation: ICT exports and patent-based indicators may not fully capture the 

multidimensional aspects of digital transformation. Alternative measures such as digital intensity 

indices, digital service trade, or e-commerce activity could be incorporated in future models. 

 Cross-Country Heterogeneity: This study uses a panel of G20 economies; however, country-level 

variations remain important. Comparative or cluster analyses could reveal how institutional capacity 

and policy environments shape the digitalisation–sustainability relationship. 

 Dynamic and Nonlinear Interactions: Future studies might explore nonlinear or regime-switching 

approaches to capture asymmetric and time-varying effects of digitalisation on sustainability under 

different policy or technological regimes. 

 Policy Implementation and Governance Aspects: Further empirical work could examine how 

governance quality, regulatory efficiency, and international cooperation influence the success of digital 

transformation policies in advancing sustainable development. 
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 This study analyzes the connectedness dynamics between artificial intelligence 

(AI)-themed indices and the global environmental, social, and governance (ESG) 

index within a nonlinear and regime-sensitive framework. Using daily data for the 

2018-2025 period, the Quantile-on-Quantile Connectedness (QQC) approach is 

employed to examine how information transmission between AI and ESG markets 

varies across different distributional states. The empirical findings indicate that 

under adverse market regimes, AI indices predominantly act as receivers of 

information, while the ESG index assumes a transmitter role. In contrast, during 

periods associated with more favorable market conditions, the direction of 

information flow reverses, and AI indices tend to function as net transmitters 

influencing ESG performance. These results reveal that the connectedness 

between AI and ESG indices is highly nonlinear, asymmetric, and strongly 

dependent on market regimes rather than being stable over time. Overall, the 

findings provide relevant insights for investors, policymakers, and financial 

regulators by highlighting how AI and sustainability-oriented markets alternately 

shape information flows under stress and non-stress conditions, thereby offering 

a regime-aware framework for portfolio diversification, risk monitoring, and 

financial stability assessment.  

 

1. Introduction 

 

In recent years, financial markets have undergone a profound transformation driven by technology-

centered innovations and the growing prominence of sustainability-oriented investments. On one hand, 

investment strategies grounded in ESG criteria have evolved from being merely ethical preferences to 

becoming critical components of long-term return generation and risk management (Kräussl 2024; 

Lunawat 2025). On the other hand, AI transformations are reshaping capital markets and generating a 

structural shift within the financial sector. As AI continues to define the trajectory of technological 

development and innovation, investor interest in firms that lead advancements in this domain has 

intensified (Poutachidou and Koulis 2025). Particularly since late 2022, the rapid expansion of 

generative AI has substantially heightened investors’ attention toward AI-based firms and AI-themed 

portfolios (Qin 2025). This surge has made the interaction between AI-based financial indicators and 

sustainability-oriented indices increasingly visible in terms of investor behavior and overall market 

dynamics.  
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One of the primary driving forces behind this transformation in financial markets is digital 

innovation. Digital innovation is defined as the effective integration of digital technologies into business 

processes and the development of novel digital products (Nambisan et al. 2017). With its strong potential 

to promote sustainable business practices, digital innovation enhances operational efficiency, helps 

optimize resource utilization, enables remote-work flexibility, and enhances transparency, which in turn 

supports better environmental performance, stronger social responsibility, and more effective 

governance practices. Moreover, by reshaping how firms interact with their external environment, it 

influences stakeholder relations and competitive dynamics (Tian et al. 2022). This micro-level 

transformation gradually generates macro-level reflections in financial markets, and this observation 

aligns with studies demonstrating the impact of digital transformation on corporate environmental 

performance (Wang et al. 2025). In this regard, digital innovation can indirectly influence both the 

direction and the intensity of information flows between technology-based investment indices and 

sustainability indices.  

Digital transformation also plays a critical role in improving environmental performance. Advanced 

digital technologies enable firms to monitor and manage environmental indicators—such as energy 

consumption and emissions—in real time, thereby reducing environmental impacts by increasing 

resource-use efficiency within production processes (Nguyen et al. 2020). Moreover, digitalization 

facilitates the adoption and diffusion of green technological innovations, encouraging environmentally 

friendly production practices (Chen and Xie 2022). The information transparency and external oversight 

made possible by digital technologies also contribute to enhanced corporate environmental 

responsibility, prompting firms to adopt more sustainable and accountable strategies (Hao et al. 2023; 

He et al. 2022). Therefore, the positive influence of digital innovation on ESG performance is not 

confined solely to the firm level; it can also manifest in the interaction dynamics between indices, 

reflecting the broader implications of technological transformation in financial markets. 

Within this framework, AI, as a major pillar of digital innovation, has become an important area of 

application that can meaningfully affect ESG performance. AI applications can directly affect multiple 

dimensions of ESG performance, ranging from optimizing energy consumption and waste management 

to strengthening diversity and inclusion through unbiased decision-making processes (Vinuesa et al. 

2020). Therefore, the interaction between generative AI and sustainability should be viewed not merely 

as a technological innovation but also as a strategic dynamic shaping the future of financial markets. 

The reflections of AI-driven technological progress in financial markets can be observed concretely 

through AI indices, and the interaction between these indices and ESG indicators serves as a critical 

signal for understanding the capacity of digital transformation to create sustainable value in capital 

markets.  

On the other hand, during the same period, the concept of sustainability has also risen to a central 

position among firms’ strategic priorities. This trend is driven by the increasing emphasis placed by 

international institutions—such as the United Nations and the European Union—on not only 

environmental responsibility but also social welfare and inclusive development (Farahani et al. 2017). 

Consequently, in a period when technological transformation gains momentum on one side and 

sustainability-oriented policies strengthens on the other, a new interaction domain emerges at the 

intersection of these two areas. At this point, the connectedness between AI and ESG indicators becomes 

crucial for identifying investor preferences and achieving portfolio diversification. Thus, the AI–ESG 

nexus constitutes a relatively new and increasingly specific field within the literature. In sum, examining 

the impact of digital transformation—and AI technologies as one of its core components—on 

sustainability is also essential for fostering the sustainable transformation of the economy and society 

(Wang et al. 2025a). 

The interaction between AI-based investment instruments and ESG-oriented financial indices is 

primarily shaped through information transmission processes and investor sentiment channels. While 

innovation-driven AI assets tend to respond rapidly to changes in technological expectations and 

information flows, ESG-oriented assets are more closely associated with policy developments and long-

term risk assessments, thereby exhibiting relatively slower adjustment dynamics (Abdelkader and Si 

Mohammed 2025). Moreover, the fact that financial asset prices are determined not only by fundamental 

factors but also by shifts in expectations and risk perceptions that vary across market conditions renders 

investor sentiment a key mechanism governing the direction and intensity of information spillovers 

between these two market segments (Barberis et al. 1998; Baker and Wurgler 2006). In this context, the 
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connectedness between AI and ESG indices is highly likely to display a time-varying, asymmetric, and 

regime-sensitive structure. 

A segment of the existing literature examines the performance and behavior of AI-based investment 

instruments (Poutachidou and Koulis 2025; Qin 2025), while another segment investigates the role of 

AI tools in financial behavior within the ESG framework (Abdalmuttaleb et al. 2022). Lim (2024), in 

his study analyzing research domains related to ESG-AI trends in the finance literature, identifies that 

the strongest focus lies in the determination of trading and investment areas. Systematic research on 

ESG investments, on the other hand, generally concentrates on themes such as risk–return relationships, 

portfolio diversification, and corporate governance (Kräussl et al. 2024). This pattern indicates the need 

for a regime-sensitive analytical framework that can reveal how the AI-ESG interaction evolves, 

particularly under extreme market conditions. In this respect, the direction, magnitude, and asymmetric 

structure of information flow between AI-based indices and ESG indices emerge as a relatively 

unexplored area in the contemporary literature. 

The primary objective of this study is to examine the connectedness among AI indices, specifically 

the Nasdaq CTA Artificial Intelligence Index (AI_NASDAQ) and the Global X Artificial Intelligence 

& Technology ETF (AIQ) and the MSCI World ESG Leaders Index, which is employed as the 

sustainability indicator, using daily data from the period 1 November 2018 to 27 October 2025. The 

analysis utilizes the QQC approach developed by Gabauer and Stenfors (2024). Rather than focusing 

solely on average relationships, the study aims to reveal in detail how different market regimes (e.g., 

stress conditions such as the COVID-19 period) shape shock transmission between the two markets at 

various quantile levels. In doing so, the nonlinear, asymmetric, and regime-dependent structure of the 

interaction between AI markets and the ESG index representing global sustainability performance is 

comprehensively evaluated. The resulting framework seeks to enhance the understanding of the dynamic 

relationship between technology-based and sustainability-based financial markets. 

This study fills an important gap in the literature examining the financial interaction between AI 

indices and the ESG index, as most existing research focuses on the impact of AI on ESG performance 

at the firm level, while the relationship between market indices is addressed only to a limited extent and 

predominantly through linear methods. By employing the QQC approach, this study offers a novel 

contribution to the literature through its quantile-based, regime-dependent, and nonlinear examination 

of this relationship. The QQC methodology enables a detailed exploration of how AI and ESG markets 

interact during periods of low, normal, and high volatility, thereby making visible the tail connectedness 

structures, asymmetries, and crisis-specific dynamics that conventional methods typically overlook. 

This distinctive analytical framework allows investors to conduct more accurate risk assessments for 

portfolio diversification strategies, enables policymakers to design coordinated technology and 

sustainability policies, and helps firms better evaluate the indirect financial implications of AI 

investments on sustainability performance. In sum, by analyzing the interaction between AI and ESG 

markets through a multidimensional perspective, this study provides a substantial and innovative 

contribution to both the theoretical and empirical literature.  

Accordingly, the subsequent sections of the study are structured as follows. Section 2 provides a 

comprehensive review of the existing literature addressing the relationship between AI and ESG. Section 

3 presents the methodological framework of the research and introduces the data set, variables, and 

empirical approach in detail. Section 4 reports the findings of the quantile-level connectedness analyses 

obtained through the implementation of the QQC approach. In Section 5, the findings are discussed from 

a multidimensional and holistic perspective. Section 6 develops policy implications, and finally, Section 

7 presents the limitations of the study and offers directions for future research. 

 

2. Literature review 

 

AI, which has become one of the most prominent concepts of the modern world and whose 

significance, applicability, and implications are frequently debated, has evolved into a transformative 

innovation shaping numerous sectors and structures (Vinuesa et al. 2020). For instance, Acemoglu and 

Restrepo (2018) examine AI’s two opposing effects—namely the displacement effect and the 

productivity effect—on global productivity; Bolukbasi et al. (2016) focus on issues of gender equality 

and inclusion; Norouzzadeh et al. (2018) explore its impacts on ecological systems and the environment; 
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Wang et al. (2025a) and Nishant et al. (2020) investigate implications for sustainability; and Vinuesa et 

al. (2020) assess its direct influence on the Sustainable Development Goals. These studies consistently 

demonstrate that AI has substantial and wide-ranging effects. Such broad impacts of AI become even 

more visible in finance, which is among the sectors experiencing the most intensive digitalization. 

Digitalization is one of the domains with which the financial sector interacts most intensively. In 

particular, with the growing influence of the millennial generation in both the business world and 

consumer markets, technologies such as cloud services, open-source software, AI, and mobile devices 

have rapidly proliferated (Hill 2018). With the growing reliance on digital financial services such as 

mobile payments, access to the financial system has widened considerably, helping to improve inclusion 

among low-income populations (Lee et al. 2021; Siddiqui and Siddiqui 2020). It is widely acknowledged 

that the financial sector—being one of the industry’s most closely aligned with technological 

development—is among the areas in which AI is expected to exert the strongest impact. Indeed, the 

effects of AI in finance have been the subject of extensive research, and continue to attract substantial 

academic attention (Bredt 2019; Biallas and O'Neill 2020; Milana and Ashta 2021). The principal 

functions of AI in the financial sector include enhancing the quality of products and services through 

advanced analytical insights, and enabling more efficient applications such as fraud detection, anti–

money laundering (Bredt 2019), and credit rating (Plawiak et al. 2019). Additionally, many studies 

examining AI applications in accounting and finance have focused on portfolio optimization, risk 

management, and asset pricing, further underscoring the sector’s extensive integration with AI-driven 

tools and processes (Ertenlice and Kalayci 2018). 

One of the key reflections of this transformation in financial markets is the emergence of thematic 

AI indices and AI-focused ETFs. Consequently, these instruments have increasingly become the subject 

of academic investigation. For example, Poutachidou and Koulis (2025) examine 15 AI-focused ETFs 

in the United States and show that the performance of these funds is largely driven by asset selection, 

while investment style and the degree of active–passive management differ substantially across funds. 

In another study, Belhouichet et al. (2025) employ a QVAR-based tail connectedness analysis and 

demonstrate that AI and robotics ETFs act as net transmitters of market shocks—together with the S&P 

500—and that this effect is particularly concentrated under extreme market conditions. According to 

their findings, AI-based ETFs are becoming increasingly influential within the financial system, both in 

terms of investment-style characteristics and risk-spillover mechanisms. 

ESG is a form of investment that creates long-term social, environmental, and economic value 

(Iannone et al. 2025). In the literature on the financial performance of ESG indices—particularly during 

periods of structural disruptions such as wars and pandemics (Broadstock et al. 2021; De Renzis et al. 

2024; Naffa and Dudás 2024), it is frequently argued that firms with high ESG scores exhibit lower risk, 

more stable cash flows, and stronger long-term performance (Giese and Shah 2025). For this reason, 

ESG stocks tend to be less prone to investor withdrawal during crisis periods, especially among value-

oriented investors (Lashkaripour 2023). 

Evidence indicating that AI strengthens sustainability performance has become increasingly clear in 

the literature. Liu et al. (2025) show that AI adoption generally enhances the environmental, social, and 

governance dimensions of Chinese firms, while Yu et al. (2025) similarly demonstrate that firms’ AI 

capabilities significantly improve ESG performance through more efficient resource allocation and 

supply chain optimization. Consistent with these findings, the literature emphasizes that AI enhances 

ESG performance through multiple mechanisms, including energy management (Coulson et al. 1987), 

emission reduction (Ding et al. 2024), resource optimization (Almansour 2023), strengthening corporate 

environmental reputation (Dauvergne 2022), improving stakeholder (customer) experiences (Ameen et 

al. 2021), and supporting governance processes (Reddy et al. 2020). 

Although the literature examining the impact of AI on ESG performance—predominantly at the firm 

level—has expanded rapidly, empirical evidence on how AI-ESG interactions unfold at the market level 

remains limited. Most existing studies rely on linear and mean-based methodologies, which are 

insufficient to capture regime-specific, asymmetric, and tail-sensitive information transmission 

mechanisms that become particularly salient during periods of heightened market stress. Against this 

background, this study focuses on addressing this gap by examining the interaction between AI-themed 

financial indices and ESG-oriented indices within a market-level, regime-sensitive, and nonlinear 

analytical framework. 
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3. Data and methodology 

 

Classical econometric methods predominantly focus on conditional mean effects and therefore tend 

to overlook asymmetric and directional information transmissions that emerge under tail market 

conditions (Diebold and Yılmaz 2014; Engle et al. 2020). For this reason, quantile-based approaches 

have gained increasing prominence in the finance literature and have become widely adopted in 

empirical studies (Cech and Baruník 2017; Armah and Amewu 2024; Hadad et al. 2024). 

In recent years, notable methodological advances have been made toward empirically capturing the 

complex relationships inherent in financial systems. In particular, quantile connectedness models have 

enabled the analysis of information spillovers across variables not only around the mean but also at 

different quantile levels. Building on these advancements, the QQC approach introduced by Gabauer 

and Stenfors (2024) allows the transmission mechanism between quantiles to be identified in terms of 

both direction and magnitude, rather than restricting the analysis to a single quantile. 

 

3.1. Data set 

 

In this study, the connectedness between AI-related financial assets and ESG-oriented investment 

indices is examined at the global level using daily data covering the period from 1 November 2018 to 

27 October 2025. AI-related market activity is represented by two distinct AI-based investment 

indicators: the Nasdaq CTA Artificial Intelligence Index (AI_NASDAQ), which tracks the performance 

of companies engaged in the development and application of AI technologies across the technology, 

industrial, healthcare, and other economic sectors; and the Global X Artificial Intelligence & 

Technology ETF (AIQ), which encompasses firms expected to benefit from the development and 

utilization of AI-based products and services, as well as hardware providers that enable the use of AI in 

big data analytics. Data for both indices are obtained from www.investing.com. 

Sustainability-oriented market dynamics are captured using the MSCI World ESG Leaders Index, a 

global benchmark composed of companies exhibiting high ESG performance relative to their sector 

peers. The index is constructed based on MSCI ESG ratings by selecting firms with superior ESG scores 

within each sector while maintaining market-capitalization weighting. This approach allows the index 

to represent a diversified global equity portfolio of companies with relatively strong ESG characteristics 

without deviating from a market-based index structure. Data for the index are obtained from 

www.msci.com.  

To transform the time series to a stationary form and to allow for the interpretation of percentage 

changes, logarithmic transformations are applied. This transformation is particularly essential for 

detecting the propagation of nonlinear shocks. The logarithmic transformation is defined as in Equation 

(1): 

 

𝛥𝑙𝑛𝑋ₜ =  𝑙𝑛(𝑋ₜ) −  𝑙𝑛(𝑋𝑡−1 ) (1) 

 

The logarithmic difference transformation is applied not only to stabilize the variance of the 

AI_NASDAQ and AIQ series used in the analysis but also to allow the rates of change to be interpreted 

in percentage terms. In Figure 1, the upper panels display the returns of AI_NASDAQ and AIQ, while 

the lower panel presents the level values of the ESG index. An examination of the upper panels 

corresponding to AI reveals that both indices exhibit abrupt spikes, particularly during the 2020 COVID-

19 period and after late 2023. These spikes indicate that the fluctuations observed during these periods 

are highly sensitive to shifts in investor sentiment and changes in market dynamics. In particular, the 

high-frequency volatility observed in the AI_NASDAQ index suggests a heightened sensitivity to 

systemic risk. 

On the other hand, when the trend of the ESG index is examined, it shows an upward trajectory in 

the long run, albeit with short-term fluctuations. These fluctuations can be interpreted as evidence that 

ESG is influenced by global macroeconomic dynamics. 

When Figure 1 is evaluated as a whole, it becomes apparent that the dynamic behavior of AI index 

returns and the ESG index varies across different sub-periods, particularly during episodes of heightened 
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market stress. While AI index returns display pronounced variability and volatility clustering, the ESG 

index follows smoother trend dynamics accompanied by visible structural shifts over time. These 

differences suggest that the interaction between the two series is unlikely to be stable or homogeneous 

across market conditions. Accordingly, the dependence structure between AI and ESG indices may 

differ across various segments of their conditional distributions, indicating that analyses focusing solely 

on average effects may be insufficient. In this respect, the QQC approach provides an appropriate 

framework for capturing potential nonlinear, asymmetric, and regime-dependent connectedness 

patterns. 

 

 
Figure 1. Return series of ESG and AI indices 

 

Table 1 reports the descriptive statistics of the variables. The high excess kurtosis values observed 

across all series indicate leptokurtic distributions and pronounced tail behavior. The skewness statistics 

suggest that the return distributions are asymmetric, with AI_NASDAQ exhibiting positive skewness, 

while the ESG index displays pronounced negative skewness (–0.690). 

The Jarque–Bera (JB) test results (p < 0.01) further confirm that the series do not satisfy the normality 

assumption. Taken together, the presence of asymmetry, heavy tails, deviations from normality, and 

time-varying volatility suggests that linear, mean-based methods may be inadequate for capturing the 

underlying dependence structure, thereby providing methodological support for the use of quantile-

based and regime-sensitive approaches such as QQC. 

  
Table 1. Descriptive statistics 

  AI_NASDAQ AIQ ESG 

Mean 0.000 0.000 0.089 

Variance 0.001 0.001 5.185 

Skewness 
0.176*** 

(-0.004) 

0.024 

(-0.692) 

-0.690*** 

(0.000) 

Ex. Kurtosis 
5.801*** 

(0.000) 

5.750*** 

(0.000) 

7.045*** 

(0.000) 

JB 
2292.180*** 

(0.000) 

2244.640*** 

(0.000) 

3497.469*** 

(0.000) 

ERS 
-4.661*** 

(0.000) 

-4.375*** 

(0.000) 

-16.668*** 

(0.000) 

Q(10) 
467.627*** 

(0.000) 

536.570*** 

(0.000) 

34.390*** 

(0.000) 

Q2(10) 
1017.620*** 

(0.000) 

885.609*** 

(0.000) 

550.598*** 

(0.000) 
Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively 
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3.2. Methodology 

 

Traditional dependence analyses typically focus on information transmission at the mean level and 

therefore overlook asymmetric and directional spillover effects that emerge during tail events (Diebold 

and Yılmaz 2014; Engle et al. 2020). However, as noted above, the AI-ESG relationships examined in 

this study exhibit nonlinear, threshold-driven, and quantile-sensitive dynamics. Accordingly, this study 

employs the QQC method developed by Gabauer and Stenfors (2024), which is a modern and robust 

approach for analyzing heterogeneous structures. The QQC approach investigates information 

transmission across different segments of the distribution at the quantile level and reveals directional 

connectedness within the system, thereby overcoming the limitations of traditional VAR-based models 

(Sim and Zhou 2015; Diebold and Yılmaz 2012; Chatziantoniou et al. 2021; Yıldırır Keser and Tarkun 

2025). In other words, rather than focusing solely on a specific quantile (e.g., 𝜏₁ = 0.05, 𝜏₂ = 0.05), this 

new approach captures spillovers across different quantiles (e.g., 𝜏₁ = 0.05, 𝜏₂ = 0.95), thereby relaxing 

the assumption of positive correlation in time series (Evrim Mandacı et al. 2025). 

Moreover, this method employs quantile-based Generalized Forecast Error Variance Decomposition 

(GFEVD), allowing the magnitude and direction of systemic risks to be measured and enabling the 

modeling of the distributional effects of shocks in a manner that is invariant to variable ordering 

(Diebold and Yılmaz 2012; Chatziantoniou et al. 2021; Hadad et al. 2024). The Quantile Vector 

Autoregressive model QVAR(p), which forms the foundation of the QQC framework, captures not only 

the temporal dependence of time series but also their asymmetric behavior across different quantile 

levels, thereby revealing heterogeneous interactions (Ando et al. 2022; White et al. 2015). The QQC 

method incorporates both the magnitude of shocks and their position within the distribution, enabling 

the construction of quantile-level information transfer maps and facilitating a detailed analysis of tail 

risk. Consequently, directional systemic dependence can be quantified (Gabauer and Stenfors 2024). In 

this regard, QQC is methodologically appropriate for analyzing the directional, nonlinear, and quantile-

based relationships between AI and ESG indicators. 

For a multivariate time series 𝑦ₜ ∈  ℝᴺ, the quantile-VAR model is defined as follows in Equation 

(2) (Yıldırır Keser and Tarkun 2025): 

 

𝑄ᵧₜ(𝜏 | ℱₜ₋₁)  =  ∑ 𝛷ₚ(𝜏) 𝑦ₜ₋ₚ

𝑝

𝑝=1

+ 𝜀ₜ(𝜏) (2) 

 

𝑄ᵧₜ(𝜏 |. ), denotes the conditional estimate of 𝑦ₜ at quantile 𝜏 while ℱₜ₋₁ represents the information 

set available at time 𝑡 − 1, including the lagged values of the relevant variables.  𝛷ₚ(𝜏) refers to the 

quantile-specific regression coefficients, and 𝜀ₜ(𝜏)  denotes the error term corresponding to each quantile 

level. 

Within the Quantile-Based Connectedness framework grounded in GFEVD (Diebold and Yılmaz 

2012; Gabauer and Stenfors 2024), the information transmission is defined as follows in Equation (3): 

 

𝜃ᵍᵢⱼ(𝜏, ℎ) =
 𝜎ⱼⱼ⁻¹ ∑ ( 𝑒ᵢ′𝐴ₖ(𝜏)𝛴𝑒ⱼ)²

ℎ−1

𝑘=0

∑ (𝑒ᵢ′𝐴ₖ(𝜏)𝛴𝐴ₖ(𝜏)′𝑒ᵢ) 
ℎ−1

𝑘=0

 (3) 

 

In Equation (3), θᵍᵢⱼ(τ, h)  represents the generalized forecast error variance decomposition 

(GFEVD) for quantile level 𝜏 and forecast horizon ℎ, measuring the contribution of variable 𝑗 to variable 

𝑖. Aₖ(τ), denotes the quantile-specific moving average coefficient matrices at lag 𝑘. 𝑒ᵢ and 𝑒ⱼ, represent 

the selector vectors that extract the i-th and j-th variables from the system, respectively. 𝛴 denotes the 

error covariance matrix, and 𝜎ⱼⱼ represents the j-th diagonal element of 𝛴. 

Accordingly, the Total Connectedness Index (TCI) is computed as follows in Equation (4): 

 

 

𝑇𝐶𝐼(𝜏) =
∑ 𝜃ᵍᵢⱼ(𝜏, ℎ)𝑖≠𝑗

∑ 𝜃ᵍᵢⱼ(𝜏, ℎ)𝑖𝑗
× 100 (4) 
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Net directional connectedness is represented in Equation (5): 

 

𝑁𝐸𝑇𝑖(𝜏) = ∑ 𝜃 𝑗g𝑖(𝜏, ℎ)

𝑗≠𝑖

− ∑ 𝜃ᵍ𝑖𝑗(𝜏, ℎ)

𝑗≠𝑖

 (5) 

 

When this value is positive, the variable acts as an information transmitter within the system; when 

it is negative, it serves as an information receiver. Unlike traditional VAR and DCC models, the QQC 

approach enables the simultaneous analysis of both the magnitude of shocks and the asymmetric 

structure of responses across different quantile levels. Owing to this capability, the nonlinear and 

directional connectedness between AI indices and the ESG index can be modeled in a more 

comprehensive manner. 

. 

4. Empirical results 

 

In this section of the study, the quantile-level reciprocal connectedness dynamics between the 

performances of AI indices and the ESG index are analyzed in detail. Owing to the QQC approach, not 

only mean-based relationships but also the dependence structures that emerge under extreme market 

conditions become visible. This method reveals regime-dependent and asymmetric connectedness 

patterns that traditional linear models fail to capture. Consequently, it enables a deeper understanding 

of how market behavior evolves across different quantiles. 

Based on the TCI results in Figure 2, the connectedness between AIQ and ESG changes notably 

depending on the size of shocks (horizontal axis) and where the information lies within the distribution 

(vertical axis). The values displayed in the figure indicate that connectedness between the AI and ESG 

indices strengthens in the upper-tail regions of the conditional distribution, while remaining elevated 

also in the lower-tail states, with particularly high levels observed at extreme quantile combinations 

(e.g., 77.4% at 0.05×0.05 and 63.8% at 0.95×0.95). This demonstrates that the variables exhibit strong 

connectedness under both positive and negative tail scenarios. The high TCI observed in the lower-tail 

quantiles indicates that, under adverse market conditions, shocks propagate more easily and in a 

bidirectional manner. However, the pattern differs in the mid-quantiles: the weakening of connectedness 

in this region suggests that, under normal market conditions, information flow is more limited and is 

generally shaped by local dynamics. Taken together, the findings reveal that the AI-ESG connectedness 

is not linear; on the contrary, it is highly sensitive to market dynamics and exhibits a strongly nonlinear 

structure. 

 

 
Figure 2. Quantile total connectedness indices for AIQ and ESG 

 

Based on the TCI results in Figure 3, the connectedness between AI_NASDAQ and ESG varies 

systematically across different regions of the conditional distribution. The figure shows that overall 

connectedness intensifies under tail conditions (e.g., 78.3% at 0.05×0.05 and 61.6% at 0.95×0.95), 

indicating stronger interdependence during extreme distributional states. By contrast, connectedness 
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weakens markedly around the central quantiles, suggesting that market interactions are more limited 

under relatively normal conditions. 

Taken together, these patterns indicate that the AI-ESG relationship is not constant over time or 

across market regimes. Instead, the strength of connectedness is highly sensitive to distributional states, 

which cannot be adequately captured by linear or mean-based approaches. This provides direct empirical 

support for the use of a quantile-based and regime-sensitive framework such as QQC. 

 

 
Figure 3. Quantile total connectedness indices for AI_NASDAQ and ESG 

 

Figure 4 illustrates that the direction and magnitude of net connectedness between AIQ and ESG 

vary across quantiles, indicating a regime-dependent structure. The prevalence of negative net values in 

the lower quantiles suggests that AIQ predominantly acts as a net receiver of shocks during these states, 

implying that information transmission from ESG to AIQ is relatively stronger in this region of the 

distribution. In contrast, net values become partially positive in the upper quantiles, indicating that AIQ 

transitions into a net transmitter role, while the ESG index assumes a relatively more responsive 

position. The near-zero net values observed in the mid-quantiles point to weak or balanced directional 

interactions, suggesting that information flows are less pronounced under relatively moderate market 

conditions.  

Taken together, these findings demonstrate that the direction of information transmission between 

AIQ and ESG is not constant, but varies systematically across quantiles, highlighting a nonlinear and 

regime-dependent connectedness structure. 

 

 
Figure 4. Net Quantile connectedness between AIQ and ESG 

 

As illustrated in Figure 5, the quantile-based net directional connectedness between AI_NASDAQ 

and ESG varies markedly across quantiles, indicating a regime-dependent directional structure. The 

predominance of negative net values in the lower quantiles suggests that AI_NASDAQ mainly acts as 
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a net receiver in this region of the distribution, implying relatively stronger information transmission 

from ESG to AI_NASDAQ under these states. 

In contrast, net values turn positive in the upper quantiles, indicating that AI_NASDAQ assumes a 

net transmitter role, while ESG becomes relatively more responsive. The near-zero net values observed 

around the central quantiles point to weak or balanced directional interactions, suggesting the absence 

of a dominant information flow under moderate conditions. Overall, these findings indicate that the 

direction of information transmission between AI_NASDAQ and ESG is not constant, but changes 

systematically across quantiles, highlighting a nonlinear and regime-sensitive connectedness pattern that 

is fully consistent with the QQC framework. 

 

 
Figure 5. Net Quantile connectedness between AI_NASDAQ and ESG 

 

According to the visual evidence presented in Figure 6, the information flow between AIQ and the 

ESG index varies over time, indicating a time-varying directional connectedness structure. In the graph, 

the green line (Direct TCI) represents information transmission from ESG to AIQ, the red line (Reverse 

TCI) represents information transmission from AIQ to ESG, and the blue line (ΔTCI = Direct − Reverse) 

captures the net directional dominance between the two markets. Positive values of ΔTCI indicate a 

relative dominance of ESG-to-AIQ transmission, whereas negative values indicate dominance in the 

opposite direction. During the 2020–2021 pandemic period, the Reverse TCI generally lies above the 

Direct TCI, and ΔTCI remains predominantly negative, indicating that AIQ tends to act as a net 

transmitter, while the ESG index assumes a more responsive role. This pattern suggests a temporary 

strengthening of AIQ-to-ESG information transmission during this period. In the post-2022 period, the 

difference between Direct and Reverse TCI narrows, and ΔTCI fluctuates around zero, pointing to a 

more balanced and less persistent directional structure of information transmission. During this phase, 

neither direction remains consistently dominant, although short-lived shifts continue to emerge. 

Overall, these findings indicate that directional connectedness between AIQ and ESG is not stable 

over time, but evolves across different periods, consistent with a dynamic and regime-sensitive 

connectedness framework. 

 

 
Figure 6. Direct and reverse total connectedness indices for AIQ and ESG 
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The visual evidence presented in Figure 7 shows that the information flow between AI_NASDAQ 

and the ESG index varies over time, indicating a time-varying directional connectedness structure. 

Periods in which ΔTCI takes positive values indicate a relative dominance of information transmission 

from ESG toward AI_NASDAQ, whereas negative ΔTCI values indicate dominance in the opposite 

direction, with AI_NASDAQ acting as a net transmitter. During the early part of the sample, the Reverse 

TCI generally lies above the direct TCI, and ΔTCI remains predominantly negative, suggesting that 

AI_NASDAQ more frequently assumes a net transmitter role, while ESG appears relatively more 

responsive. In later periods, the difference between direct and reverse TCI narrows, and ΔTCI fluctuates 

around zero, pointing to a more balanced and less persistent directional structure of information 

transmission. Although short-lived episodes of directional dominance continue to emerge, no single 

direction remains permanently dominant. Overall, these findings indicate that the connectedness 

between AI_NASDAQ and ESG is asymmetric and time-varying, and that the direction of information 

transmission changes across different periods, consistent with a regime-sensitive connectedness 

framework. 

 

 
Figure 7.  Direct and reverse total connectedness indices for AI_NASDAQ and ESG 

 

5. Conclusion and discussion 

 

This study examines the information flow between AI indices and the ESG index within a nonlinear, 

regime-sensitive, and asymmetric framework. By moving beyond mean-based analysis, the findings 

highlight that the dependence structure between AI and ESG markets is inherently state-dependent. The 

findings show that information diffusion differs substantially in both direction and magnitude under 

varying market conditions. Empirical results indicate that under adverse market regimes (lower-quantile 

states), the AI_NASDAQ and AIQ indices predominantly act as net receivers, while the ESG index 

assumes the role of an information transmitter. By contrast, during more optimistic market conditions, 

AI indices generally emerge as dominant transmitters of information, with the ESG index responding 

accordingly. This asymmetry suggests that risk- and sustainability-related signals become more 

influential during stressed market environments, whereas technology and innovation-driven 

expectations dominate under favorable conditions. 

The results are consistent with prior studies emphasizing that information transmission within 

financial systems varies over time in both direction and intensity (Diebold and Yılmaz 2012; Baruník 

and Křehlík 2018). They also align with the literature highlighting the effectiveness of quantile-based 

connectedness approaches in capturing risk spillovers in fintech and innovation-driven assets (Čech and 

Baruník 2017; Gabauer and Stenfors 2024). Moreover, the findings are in line with evidence reported 

by Ghaemi Asl et al. (2023), who document regime-sensitive interactions among financial technology 

indices, as well as by Ringstad and Tselika (2024) and Naeem et al. (2021), who show that sustainability-

oriented assets exhibit asymmetric responses to market shocks. Within this context, the empirical 

evidence suggests that the ESG index tends to play a direction-setting role in information propagation 

during periods of adverse market conditions, indicating that ESG-related information may act as a 

reference point for investors when market uncertainty intensifies. 
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Overall, the analysis underscores that AI-ESG interactions are inherently dynamic and conditioned 

by prevailing market regimes, rather than being governed by stable or average relationships. The 

observed regime-dependent shifts in both the direction and intensity of information flow highlight the 

importance of accounting for distributional heterogeneity when assessing the linkage between 

technology-driven and sustainability-oriented assets. 

 

6. Policy implications 

 

The results indicate that information transmission in financial markets changes over time and across 

different market regimes. The finding that the ESG index assumes a more influential role in information 

flow during periods of heightened market stress suggests that ESG indicators may function as stabilizing 

components in portfolio diversification. From a policy perspective, this implies that sustainability-

oriented market signals could be systematically integrated into macroprudential monitoring frameworks 

as complementary indicators of market-wide risk sensitivity. In this context, ESG-related measures may 

serve not only as long-term sustainability benchmarks but also as short-term signals reflecting shifts in 

market sentiment under stressed conditions. 

Accordingly, incorporating ESG-based risk indicators into financial stability frameworks and 

developing stress-testing protocols that explicitly account for regime shifts may provide policymakers 

with significant advantages in the early detection of systemic vulnerabilities. Such an approach becomes 

particularly relevant in environments where technological innovation and AI-driven investment 

dynamics amplify cross-market information transmission. Embedding regime-sensitive indicators into 

stress-testing exercises may help policymakers better capture nonlinear spillover effects that intensify 

during extreme market states. 

From the perspective of regulatory authorities, the development of policy tools that monitor potential 

excessive signal amplification arising from AI-driven dynamics and that support balanced information 

flows across financial markets may contribute to maintaining overall market stability. In particular, 

supervisory frameworks that jointly assess AI-driven market activity and sustainability-related signals 

may improve the oversight of emerging sources of systemic risk. These implications are especially 

relevant for institutions, financial regulators, and institutional investors concerned with systemic risk 

monitoring under technologically driven market dynamics. For institutional investors, incorporating 

regime-dependent ESG signals into portfolio risk management strategies may also enhance resilience 

against abrupt market transitions. 

 

7. Limitations and future research 

 

This study is limited to daily-frequency data covering the period from 1 November 2018 to 27 

October 2025, and the AI-sustainability relationship is examined only through two global AI indicators 

(AI_NASDAQ and AIQ) and ESG index (MSCI World ESG Leaders). The restriction of the dataset to 

a specific set of indices and a relatively narrow time span constitutes the main limitations of the analysis. 

In future research, the connectedness between AI and ESG could be examined using sectoral or 

regional classifications, and the analysis could also be extended to the individual subcomponents of 

ESG. Additionally, the application of comparative approaches that incorporate different market regimes, 

structural breaks, and time-varying dynamics may provide a more comprehensive understanding of the 

connectedness between AI and ESG. In addition, employing alternative definitions of AI and ESG 

indices may allow for testing the sensitivity of the findings to index selection. Moreover, the use of 

alternative data frequencies (e.g., weekly or higher-frequency observations) could help disentangle 

short- and long-horizon components of AI-ESG information transmission, thereby offering further 

insights into the temporal structure of regime-dependent connectedness. 
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 This study examines the dynamic connectedness between sustainable 

cryptocurrencies and Ethereum using the Quantile-on-Quantile Connectedness 

(QQC) methodology. The dataset consists of daily observations covering the 

period from April 19, 2019 to September 12, 2025. The analysis focuses on 

Cardano (ADA), IOTA, and Stellar (XLM), which are known for their high energy 

efficiency and environmentally sustainable blockchain architectures. Owing to its 

ability to measure the interactions between transmitting and receiving variables 

across different distributional quantiles, the QQC approach enables a detailed 

assessment of the direction and magnitude of information spillovers, particularly 

under extreme market conditions such as stress episodes or liquidity shortages. 

The findings indicate that Ethereum acts predominantly as a systemic net 

transmitter across most quantile levels, while Cardano and IOTA serve as net 

receivers, especially within medium and high quantiles. Stellar exhibits limited 

connectedness during low-volatility market regimes. Overall, the results suggest 

that the information transmission dynamics of sustainable crypto assets are highly 

sensitive to Ethereum’s market influence, highlighting the increasing role of 

energy-efficient blockchain ecosystems in the broader digital finance landscape. 

The findings are important for portfolio managers in terms of making asset 

allocation decisions by taking into account the risk and diversification potential of 

sustainable cryptocurrencies relative to Ethereum.  

 

1. Introduction 

 

The theoretical linkage between sustainable (green) digital assets and conventional (dirty) digital 

assets primarily stems from structural differences in their market identities, perceived legitimacy, and 

risk-bearing characteristics. While conventional digital assets are largely associated with speculative 

price dynamics, high volatility, and short-term investment horizons, sustainable digital assets are 

positioned around environmental awareness, normative values, and long-term sustainability narratives. 

This differentiation establishes a theoretical foundation within the crypto ecosystem that allows for both 

synchronous interactions and conditional decoupling between the two asset classes (Haq and Bouri 

2022; Sharif et al. 2023; Pham et al. 2022). From a theoretical standpoint, the relationship between green 
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and dirty digital assets exhibits an asymmetric and regime-dependent interaction structure. Conventional 

digital assets, owing to their deeper liquidity and broader investor base, tend to function as central hubs 

that absorb and transmit market shocks more rapidly. In contrast, sustainable digital assets are followed 

by a more selective investor base, leading to differentiated responses to information shocks. As a result, 

return and risk transmission often occurs in a unidirectional or quantile-sensitive manner rather than 

symmetrically (Naeem et al. 2023; Abdullah et al. 2025; Belguith et al. 2025). 

From a behavioral finance perspective, the theoretical connection between the two asset classes is 

shaped by ethical perceptions, environmental awareness, and investor motivation. Sustainable digital 

assets are not perceived solely as financial instruments but also as representations of a normative and 

environmentally conscious stance, which directly influences investors’ risk tolerance, holding periods, 

and crisis-time portfolio adjustments. By contrast, conventional dirty digital assets are more closely 

associated with herd behavior, excessive price reactions, and speculative sentiment. This behavioral 

divergence provides a theoretical explanation for the persistent asymmetry observed in the interaction 

between the two asset groups, even during periods of market turmoil (Sharif et al. 2023; Umar et al. 

2023; Vinogradova and Gubareva 2025). From a financial stability and systemic risk perspective, the 

linkage between sustainable and dirty digital assets can be interpreted through the redistribution of risk 

within the crypto ecosystem. Conventional digital assets frequently emerge as core transmitters of 

systemic risk, whereas sustainable digital assets, although not fully insulated from such risks, may 

assume receiver or partial buffering roles under specific market regimes. This indicates that the 

relationship between the two asset classes cannot be adequately captured by static correlations, but 

instead reflects a nonlinear and state-dependent interaction structure (Naeem et al. 2023; Chui et al. 

2025; Deng et al. 2025). 

Time and market-state dependence constitutes another fundamental dimension of the theoretical 

relationship between green and dirty digital assets. Under normal market conditions, interactions 

between these assets tend to remain relatively weak; however, during periods of heightened uncertainty 

and extreme market stress, the structure of connectedness can intensify or even reverse. Such tail-

dependent behavior suggests that the links between sustainable digital assets and conventional 

cryptocurrencies are redefined during crisis episodes rather than remaining stable over time (Pham et al. 

2022; Naeem et al. 2023; Alshammari et al. 2025). Finally, the theoretical relationship between 

sustainable green digital assets and conventional dirty digital assets should be evaluated within the 

broader context of the normative transformation of digital finance. By offering an alternative value 

system and ethical framework within crypto markets, green digital assets deepen intra-market 

segmentation, while their interaction with dirty digital assets becomes a key indicator of whether this 

transformation is temporary or structurally embedded. In this sense, the linkage between the two asset 

classes represents not merely a financial interaction but also a structural signal regarding the 

evolutionary trajectory of the digital asset ecosystem (Esmaeilian et al. 2024; Vinogradova and 

Gubareva 2025). 

This study aims to examine the dynamic connectedness structure between sustainable 

cryptocurrencies, namely Cardano (ADA), IOTA (MIOTA), and Stellar (XLM), and Ethereum (ETH) 

by employing the Quantile-on-Quantile Connectedness (QQC) approach developed by Gabauer and 

Stenfors (2024). The analysis seeks to reveal the direction, magnitude, and tail risk dependence of 

information transmission among these assets across different time horizons and return quantiles 

representing varying market conditions, including low, medium, and high return regimes. Within this 

framework, the study empirically investigates whether Ethereum acts as a systemic information 

transmitter or receiver vis a vis sustainable digital assets, thereby providing deeper insights into the time 

and regime dependent nature of digital financial sustainability. 

The main motivation of this study stems from the fact that the existing cryptocurrency literature has 

addressed the relationships between sustainable (green) crypto assets and conventional digital currencies 

in a rather limited and fragmented manner. Most prior studies either examine sustainable 

cryptocurrencies in isolation or evaluate them within an aggregated framework of the broader crypto 

market. In contrast, empirical research that directly and explicitly investigates the dynamic interaction 

between sustainable cryptocurrencies and dominant conventional digital currencies, particularly 

Ethereum, remains scarce. However, given its market depth, liquidity, and central role in information 

diffusion, Ethereum represents a natural benchmark and reference asset for understanding the behavior 

of sustainable digital assets. This study aims to fill this gap by analyzing the relationships between 
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sustainable cryptocurrencies, namely Cardano, IOTA, and Stellar, and Ethereum within a QQC 

framework. In doing so, the study moves beyond the average-based or single-dimension connectedness 

approaches that dominate the existing literature. The quantile-on-quantile methodology allows for the 

simultaneous examination of the direction and intensity of information transmission across low, 

medium, and high return regimes, thereby enabling a more robust and clearer identification of nonlinear, 

asymmetric, and regime-dependent relationships between sustainable and conventional digital assets. 

As such, this study reveals dimensions of interaction that remain hidden under conventional mean-based 

analyses. 

Another important contribution of this study lies in empirically assessing the systemic role of 

Ethereum vis-à-vis sustainable cryptocurrencies. Whether Ethereum functions as a dominant 

information transmitter or, under certain market conditions, assumes the role of an information receiver 

is a critical question for understanding the internal dynamics of the digital financial ecosystem. By 

demonstrating that this role may vary across time and return quantiles, the study challenges the notion 

of a static and unidirectional leadership structure within cryptocurrency markets. From an applied 

perspective, the findings offer important implications for investors and portfolio managers. Identifying 

how the relationship between sustainable cryptocurrencies and Ethereum evolves across different 

market regimes, particularly in extreme return conditions, provides valuable insights for risk 

management, portfolio diversification, and hedging strategies. Moreover, understanding the conditions 

under which sustainable digital assets decouple from or become more strongly connected with 

conventional cryptocurrencies contributes to a more informed interpretation of investor behavior in 

crypto markets. Finally, this study also provides meaningful insights for policymakers and regulatory 

authorities. In the context of digital financial sustainability, a key question concerns the extent to which 

sustainable crypto assets are integrated with or differentiated from the conventional cryptocurrency 

ecosystem. By revealing the regime-dependent nature of the relationships between sustainable 

cryptocurrencies and a central digital currency such as Ethereum, this study supports the development 

of more targeted and evidence-based regulatory and policy frameworks. In this sense, the study offers a 

comprehensive perspective that jointly informs academic debates and policy discussions on the 

sustainable transformation of digital finance. 

The remainder of the paper is structured as follows. Section 2 offers an overview of the related 

literature. Section 3 introduces the dataset, variables, and econometric methods used. Section 4 discusses 

the results in light of the existing literature. The final section synthesizes the key findings of the study, 

discusses their policy implications, and outlines the main limitations alongside directions for future 

research. 

 

2. Literature review 

 

In recent years, the environmental impacts and sustainability dimensions of cryptocurrency markets 

have become a rapidly expanding area of research in the finance literature. While the environmental 

costs of energy-intensive conventional (dirty) cryptocurrencies have been widely debated, these 

criticisms have paved the way for the emergence and academic examination of ''clean'', ''green'', and 

''sustainable'' digital assets. In this context, the literature comprehensively investigates the dynamic 

connectedness, spillover, and risk transmission mechanisms between green cryptocurrencies and dirty 

cryptocurrencies, energy markets, carbon markets, green bonds, ESG assets, and macro-financial 

indicators (Haq and Bouri 2022; Pham et al. 2022; Sharif et al. 2023; Siddique et al. 2023; Haq et al. 

2023; Haq et al. 2023a). 

The first major strand of the literature focuses on return and volatility connectedness between green 

and dirty cryptocurrencies. Studies employing dynamic connectedness, TVP-VAR, and frequency-

based approaches document that green cryptocurrencies generally act as lower risk transmitters 

compared to dirty cryptocurrencies (Sharif et al. 2023; Naeem et al. 2023; Yildirim et al. 2025; Belguith 

et al. 2025). It is emphasized that this connectedness intensifies during periods of crisis and heightened 

uncertainty, whereas under normal market conditions green cryptocurrencies exhibit a more decoupled 

structure (Umar et al. 2023; Haq and Bouri 2022; Abdullah et al. 2025). 

A second important stream of research examines the relationships between green cryptocurrencies 

and energy and fossil fuel markets. These studies show that fossil fuel price shocks affect green 
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cryptocurrencies particularly in the medium and long run, while a stronger and more stable co-

movement is observed with clean energy stocks and renewable energy assets (Umar et al. 2023a; Ali et 

al. 2024; Dias et al. 2023; Kaur et al. 2025; Pereira et al. 2025). Moreover, the connectedness between 

energy markets and green cryptocurrencies is shown to vary substantially across time, frequency, and 

quantiles (Naeem et al. 2023a; Deng et al. 2025). 

Another prominent line of research investigates the interaction between green cryptocurrencies and 

carbon markets, carbon prices, and climate-related assets. The findings indicate that carbon price 

volatility and heightened climate risk awareness strengthen the correlation with green cryptocurrencies; 

however, this relationship is largely asymmetric and concentrated in extreme quantiles (Pham et al. 

2022; Aloui et al. 2025; Abdullah et al. 2025). Within this framework, carbon-backed crypto assets and 

climate awareness indicators emerge as key determinants of the risk dynamics of green cryptocurrencies 

(Aloui et al. 2025; Fu et al. 2024). 

The connectedness between green cryptocurrencies and green bonds, ESG indices, and sustainable 

financial instruments also occupies a central position in the literature. Studies reveal bidirectional but 

limited risk transmission between green cryptocurrencies and green bonds, while the diversification 

benefits with ESG assets become more pronounced during periods of market stress (Umar et al. 2023; 

Hassan et al. 2022; Mnif et al. 2025; Chui et al. 2025; Tabassum et al. 2024). In addition, the integration 

of Islamic crypto assets and halal financial instruments into sustainable crypto markets has emerged as 

a growing research area (Mnif et al. 2024; Tabassum et al. 2024). 

Studies employing time-frequency and quantile-based methods clearly demonstrate that 

connectedness structures are highly sensitive to market conditions. In particular, during periods of 

downside risk, extreme quantiles, and heightened volatility, the risk transmission between green 

cryptocurrencies and other assets intensifies significantly (Naeem et al. 2023; Alshammari et al. 2025; 

Deng et al. 2025; Chui et al. 2025). By contrast, under normal market conditions, green cryptocurrencies 

tend to assume a more independent and diversification-enhancing role (Peng et al. 2024; Vinogradova 

and Gubareva 2025). 

Studies focusing on media attention, environmental awareness, and cryptocurrency uncertainty 

indices emphasize the role of information flows in shaping green cryptocurrency dynamics. Increases in 

environmental media attention and climate awareness strengthen the decoupling of green 

cryptocurrencies from other financial assets, whereas periods of heightened cryptocurrency uncertainty 

intensify risk contagion between green and dirty cryptocurrencies (Ndubuisi and Urom 2023; Fu et al. 

2024; Irani and Isayev 2025; Klayme and Gokmenoglu 2023). 

From a portfolio management perspective, the majority of studies suggest that green cryptocurrencies 

can serve as diversification and hedging instruments under certain conditions. When evaluated alongside 

energy, carbon, commodity, and conventional cryptocurrency assets, green cryptocurrencies are shown 

to reduce portfolio risk; however, this contribution is time-varying and strongly dependent on frequency 

and market stress (Mnif et al. 2025; Attarzadeh et al. 2024; Kaur et al. 2025a; Naeem et al. 2023). 

Finally, recent studies discuss whether green and sustainable crypto assets can be positioned as an 

independent asset class. The evidence suggests that these assets are still in an early stage of development; 

nevertheless, with the advancement of sustainable finance, climate policies, and digital transformation, 

green cryptocurrencies are expected to assume a more prominent role in the financial system over the 

long run (Esmaeilian et al. 2024; Vinogradova and Gubareva 2025; Yin et al. 2023; Alshammari et al. 

2025a; Mnif et al. 2024a). 

Collectively, these studies reinforce several overarching themes, indicating that interactions within 

sustainable digital asset markets are inherently asymmetric and strongly regime-dependent, with tail 

behaviour and extreme-quantile dynamics playing a central role in shaping return and volatility 

transmission mechanisms. In this strand of the literature, quantile-on-quantile and quantile-frequency 

methodologies have increasingly been preferred, as they are particularly effective in capturing nonlinear 

and state-dependent linkages that conventional mean-based approaches fail to detect. Moreover, 

sustainability-oriented digital assets exhibit behavioural patterns that are clearly distinct from those of 

traditional cryptocurrencies, especially during periods of heightened market stress and systemic crises. 

Despite these methodological and empirical advances, the existing literature remains limited in two 

important respects. First, there is a notable lack of studies that focus exclusively on sustainability-

oriented cryptocurrencies and metaverse-associated green tokens within a QQC framework. Second, 

empirical evidence based on high-frequency datasets capable of jointly capturing short-run shocks and 
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long-run regime shifts within sustainable digital ecosystems remains relatively scarce. Accordingly, the 

present study addresses these gaps by applying a QQC approach to high-frequency data in order to 

examine systemic risk and information-transmission dynamics within the sustainable crypto-metaverse 

nexus. 

 

3. Data and methodology 

 

3.1. Dataset and variables 

 

This study aims to examine the return and volatility spillovers, shock transmission mechanisms, and 

time-varying connectedness dynamics between sustainable cryptocurrencies and Ethereum. The main 

objective of the analysis is to reveal how the interaction between these assets evolves not only under 

average market conditions but also across different time horizons and return levels. In this context, the 

study empirically assesses whether the relationships between sustainable cryptocurrencies and Ethereum 

are asymmetric, nonlinear, and sensitive to market conditions. The analysis is based on a daily dataset 

covering the period from 19 April 2019 to 12 September 2025. This period encompasses a broad time 

span that reflects different market conditions and structural transformations in cryptocurrency markets. 

The use of daily data allows for the simultaneous examination of short-term shocks and more persistent 

interaction effects. All price data employed in the study were obtained from the reliable data source 

Investing.com. The selected assets represent digital currencies that stand out for their relatively low 

energy consumption, innovative blockchain architectures, and long-term sustainability orientation. 

Accordingly, the analysis includes the series for Ethereum (ETH), Cardano (ADA), IOTA (MIOTA), 

and Stellar (XLM). These assets are classified as sustainable cryptocurrencies, as they employ energy-

efficient blockchain protocols such as Proof-of-Stake (PoS) or Directed Acyclic Graph (DAG) 

structures. 

Ethereum (ETH), Cardano (ADA), IOTA (MIOTA), and Stellar (XLM) are digital assets that stand 

out within the blockchain ecosystem in terms of their technological architectures, areas of application, 

and sustainability-oriented approaches. Ethereum is one of the most widely used platforms for smart 

contracts and decentralized applications, and its transition to a Proof-of-Stake-based consensus 

mechanism in 2022 significantly improved its energy efficiency. Cardano adopts an academically driven 

development approach and is built entirely on the Proof-of-Stake-based Ouroboros protocol, aiming to 

simultaneously achieve security, scalability, and sustainability. IOTA differs from traditional 

blockchains by relying on a Directed Acyclic Graph (DAG) architecture known as the Tangle; this 

mining-free structure enables energy-efficient and low-cost transactions, particularly for Internet of 

Things (IoT) applications. Stellar, on the other hand, is designed to facilitate cross-border payments and 

enhance financial inclusion, offering low transaction costs and fast validation times. Taken together, 

these four assets provide a comprehensive framework that encompasses Ethereum as a central actor with 

deep market integration, as well as alternative digital assets that differentiate themselves through 

sustainability, innovative architectures, and specialized use cases. 

Ethereum’s ''Merge'' update in 2022, which reduced its energy consumption by approximately 99%, 

Cardano’s fully PoS-based consensus model, IOTA’s mining-free DAG architecture, and Stellar’s low 

energy requirements for transaction validation collectively reinforce the relevance of these assets for 

sustainability-focused analysis. These characteristics also make Ethereum a meaningful benchmark for 

examining its connectedness with other sustainable crypto assets. 

To capture asymmetric and quantile-dependent relationships among variables, this study employs 

the Quantile-on-Quantile Connectedness (QQC) approach developed by Gabauer and Stenfors (2024). 

While conventional mean-based connectedness models mainly summarize average interactions under 

''normal'' market conditions, the QQC framework explicitly reveals how these interactions vary across 

different segments of the distribution, such as low, medium, and high return or volatility regimes. The 

QQC approach adopts a two-dimensional structure that simultaneously measures both the intensity of 

shock transmission and the responsiveness of the receiving variable, thereby capturing information and 

volatility flows beyond a single average coefficient. This enables a more precise identification of 

whether the interactions between sustainable crypto assets and Ethereum strengthen in tail quantiles, 
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under which conditions spillovers intensify, and in which regimes they weaken. In this respect, QQC 

provides a dynamic and tail-sensitive analytical framework that allows the connectedness between the 

sustainable crypto ecosystem and Ethereum to be examined beyond simple average effects. 

 

3.2. Variable transformation 

 

To ensure stationarity in the time series and facilitate interpretation of results in percentage terms, 

logarithmic differencing was applied to all variables. Accordingly, each transformed variable is defined 

as follows in Equation (1). 

 

ln 𝑋𝑡 = ln (𝑋𝑡) − ln (𝑋𝑡−1) (1) 

 

Here, Δln 𝑋𝑡 denotes the logarithmic change in the corresponding series at time 𝑡. This transformation 

ensures variance stabilization while allowing increases or decreases in the variables to be evaluated in 

percentage terms. 

 

3.3. Quantile VAR model 

 

The econometric foundation of this study is based on the Quantile Vector Autoregression (QVAR) 

model. For multivariate time series 𝑦𝑡 ∈ ℝ𝑁, the quantile-VAR model is defined as follows in Equation 

(2): 

 

𝑥𝑡  =  𝜇(𝜏) + ∑ 𝐵𝑗(𝜏)𝑥𝑡−𝑗

𝑝

𝑗=1

 +  𝑢𝑡(𝜏) = 𝜇(𝜏) + ∑ 𝐴𝑗(𝜏) 𝑢𝑡−1(𝜏)

∞

𝑖=0

 (2) 

 

Here, 𝑄𝑦𝑡
(𝜏 ∣ 𝐹𝑡−1) represents the conditional 𝜏-quantile estimate of 𝑦𝑡; 𝐹𝑡−1 denotes the information 

set available at time 𝑡 − 1; Φ𝑝(𝜏) refers to the coefficient matrices specific to the quantile level; and 

𝜀𝑡(𝜏) denotes the error term. This structure allows modelling the heterogeneity in the response of 

variables to their past values across different quantile levels (for example, 0.1, 0.5, 0.9). 

 

3.4. Generalized forecast error variance decomposition (GFEVD) 

 

Using the QVAR model, the generalized forecast error variance decomposition, which measures the 

directional flow of information among variables, is computed as follows in Equation (3): 

 

𝜃̃𝑖𝑗
𝑔

(𝜏, ℎ) =
𝜎𝑗𝑗

−1 ∑ (𝑒𝑖
′𝐴𝑘(𝜏)Σ𝑒𝑗)2ℎ−1

𝑘=0

∑ (𝑒𝑖
′𝐴𝑘(𝜏)Σ𝐴𝑘(𝜏)′𝑒𝑖)

ℎ−1
𝑘=0

 (3) 

 

In Equation (3), 𝜃𝑖𝑗
𝑔

(𝜏, ℎ) denotes the contribution of variable 𝑗 to variable 𝑖at quantile level 𝜏 within 

the ℎ-step-ahead forecast horizon. 𝐴𝑘(𝜏) represents the quantile-specific moving-average coefficient 

matrices; 𝑒𝑖 and 𝑒𝑗 are the selection vectors corresponding to the relevant variables in the system; and Σ 

denotes the error covariance matrix. This framework quantifies directional information flow by 

measuring the effects that variables exert on one another across different quantile levels. 

 

3.5. Total connectedness index (TCI) 

 

To determine whether each variable acts as a net transmitter or net receiver of information within the 

system, the directional net connectedness measure is defined as follows in Equations (4): 
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𝑇𝐶𝐼(𝜏) =

∑ 𝜃𝑖𝑗
𝑔

(𝜏, ℎ)
𝑖≠𝑗

∑ 𝜃𝑖𝑗
𝑔

(𝜏, ℎ)
𝑖,𝑗

× 100 (4) 

 

This index expresses, in percentage terms, the overall rate of interaction occurring among the 

variables in the system. A high TCI value indicates strong and widespread information transmission 

throughout the system, whereas a low value suggests that the variables behave more independently. 

 

3.6. Directional net connectedness 

 

To determine whether each variable acts as a net transmitter or net receiver of information within the 

system, the directional net connectedness measure is defined as follows in Equation (5): 

 

𝑁𝐸𝑇𝑖(𝜏) = ∑ 𝜃𝑗𝑖
𝑔

(𝜏, ℎ)

𝑗≠𝑖

− ∑ 𝜃𝑖𝑗
𝑔

(𝜏, ℎ)

𝑗≠𝑖

 (5) 

 

If 𝑁𝐸𝑇𝑖(𝜏) > 0, the corresponding variable functions as a net transmitter of information within the 

system; if  𝑁𝐸𝑇𝑖(𝜏) < 0, it acts as a net receiver. This measure enables a quantitative assessment of each 

variable’s directional interaction role across different quantile levels. 

 

4. Empirical results 

 

In this section, the dynamic relationships between the metaverse and sustainable crypto assets are 

analysed using the QQC approach. The analysis covers the period from 19 April 2019 to 12 September 

2025 and is conducted using daily price returns. Unlike traditional mean-based methods, the QQC 

framework allows the examination of asymmetries, tail risks, and time-varying shock transmissions by 

uncovering the dynamics that change under different market conditions. The obtained results are first 

supported by descriptive statistics that reveal the distributional characteristics of the series, followed by 

the presentation of total, net, and directional connectedness analyses. 

 
Table 1. Descriptive Statistics 

 CARDANO IOTA XLM ETHEREUM 

Mean -0.001 0 0 0.013 

Variance 0.002 0.003 0.003 0.236 

Skewness -0.168*** 0.203*** 1.332*** 40.087*** 

 (0.005) (0.001) (0.000) (0.000) 

Ex. Kurtosis 5.534*** 10.741*** 19.369*** 1624.382*** 

 (0.000) (0.000) (0.000) (0.000) 

JB 2137.611*** 8034.852*** 26583.181*** 183940710.108*** 

 (0.000) (0.000) (0.000) (0.000) 

ERS -15.905*** -11.895*** -16.390*** -18.103*** 

 (0.000) (0.000) (0.000) (0.000) 

Q(10) 20.442*** 19.758*** 11.325** 0.784 

 (0.000) (0.000) (0.037) (0.997) 

Q2(10) 95.107*** 43.560*** 17.146*** 0.003 

 (0.000) (0.000) (0.002) (1.000) 

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively 

 

Table 1 reports the key descriptive statistics for Cardano, IOTA, Stellar (XLM), and Ethereum. The 

mean and variance values indicate substantial differences across assets in terms of both levels and 
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volatility. In particular, Ethereum’s high variance reflects a more turbulent structure over the examined 

period. Significant deviations of skewness and kurtosis from zero demonstrate that the series exhibit 

asymmetric and fat-tailed distributions, while the Jarque-Bera test results confirm the rejection of the 

normality assumption. The ERS unit-root test verifies that the series are stationary, whereas the Q(10) 

and Q²(10) statistics point to the possibility of autocorrelation and volatility clustering. Overall, the 

descriptive statistics suggest that crypto asset markets exhibit high volatility and extreme-risk 

characteristics, indicating that a quantile-based modelling approach provides an appropriate analytical 

framework for these series. 

 

 
Figure 1. Quantile total connectedness indices for Ethereum and Cardano 

 

Figure 1 illustrates the total connectedness between Ethereum and Cardano across various quantile 

combinations. The darker shades in the heatmap represent regions where information or volatility 

spillovers intensify at specific quantile pairings. The analysis indicates that TCI values increase notably 

in the tail quantile regions. This finding reveals that during periods of extreme upward or downward 

movements, the interaction between Ethereum and Cardano strengthens, meaning that market shocks 

propagate more intensely between these two assets. Conversely, the relatively lower TCI values 

observed in the mid-quantile regions suggest that under normal market conditions, the two assets exhibit 

partial decoupling. This result implies that portfolio diversification potential diminishes during periods 

of crisis and market stress, whereas Ethereum and Cardano tend to behave more independently when 

markets are calmer. 

 

 
Figure 2. Quantile total connectedness indices for Ethereum and IOTA 

 

Figure 2 presents the quantile total connectedness indices for Ethereum and IOTA. In the IOTA-

Ethereum relationship, it is observed that TCI values are relatively high not only in the tail quantiles but 

also in the mid-quantile regions. This indicates that IOTA’s market sensitivity is not limited to extreme 
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price movements; even under more ''normal'' market conditions, it maintains a strong interaction with 

Ethereum. In other words, the IOTA-Ethereum linkage exhibits a more widespread and persistent 

connectedness structure. This result suggests that, due to IOTA’s integration with the metaverse 

ecosystem, it may respond early to trends originating in Ethereum. Consequently, holding these two 

assets together for diversification purposes may offer limited risk-reduction benefits. 

 

 
Figure 3. Quantile total connectedness indices for Ethereum and XLM 

 

Figure 3 displays the quantile total connectedness indices structure between XLM and Ethereum. In 

the XLM panel, the TCI values exhibit a more dispersed and quantile-specific pattern. While the 

connectedness strengthens at certain quantile pairings, it weakens in others. This heterogeneous structure 

indicates that the interaction between XLM and Ethereum is highly dependent on specific market 

conditions and cannot be explained by a general correlation pattern. In this context, XLM may function 

at times as a risk-reducing asset in portfolios, while at other times it may act as a factor that accelerates 

shock transmission. 

 

 
Figure 4. Net Quantile connectedness between Ethereum and Cardano 

 

Figure 4 illustrates the direction of net quantile connectedness between Ethereum and Cardano. 

Negative shades indicate that Cardano is a net receiver of information, whereas positive shades signify 

that it acts as a net transmitter. The results reveal that negative tones dominate most of the matrix, 

indicating that Cardano generally functions as a net shock receiver. This finding supports the notion that 

Ethereum assumes a central role as a shock transmitter due to its market size, liquidity level, and 

ecosystem depth. This structure suggests that during periods of market turbulence, Cardano is more 

sensitive to movements originating from Ethereum; thus, news flows and price dynamics in Ethereum 

may exert persistent effects on Cardano. 
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Figure 5 presents the net connectedness structure for the IOTA-Ethereum relationship across various 

quantile combinations. Although IOTA appears as a net receiver in most quantile combinations, weak 

positive effects emerge in certain mid- and upper-quantile regions. This indicates that IOTA’s influence 

on Ethereum increases—albeit modestly—under specific market conditions, suggesting periods of 

mutual interaction. However, the overall pattern clearly shows that IOTA is less central and more 

sensitive compared to Ethereum. 

 

 
Figure 5. Net Quantile connectedness between Ethereum and IOTA 

 

Figure 6 displays the net quantile connectedness structure between XLM and Ethereum. In the XLM 

panel, both positive and negative shades coexist, indicating that the directional relationship shifts across 

different quantile combinations. This finding suggests that XLM exhibits a bidirectional interaction 

pattern. In some periods, it receives shocks from Ethereum, while in others, it responds to the market 

with its own dynamics or partially transmits shocks outward.  This bidirectional structure implies that 

XLM holds a more reactive and peripheral market position, yet it can gain strategic importance during 

certain periods. 

 

 
Figure 6. Net Quantile connectedness between Ethereum and XLM  

 

Figure 7 illustrates the joint movement of the direct and reverse TCI indices for the Ethereum–

Cardano pair over time. The results show that both indices rise notably during periods of market 

turbulence; however, during crisis episodes, the reverse TCI reaches relatively higher values. This 

finding indicates that reverse-quantile interactions become more dominant under extreme volatility 

conditions. In other words, during downturn scenarios, the flow of information from Cardano to 

Ethereum also increases, making the interaction bidirectional. Nevertheless, the long-term average 

suggests that Ethereum clearly maintains its dominant role. 

Figure 8 shows the temporal evolution of the direct and reverse TCI indices between Ethereum and 

IOTA. Compared to the Cardano pair, the differences between the two indices appear narrower; however, 
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in recent periods, the direct TCI displays an upward trend. This result suggests that in recent years, IOTA 

has developed a more autonomous price dynamic relative to Ethereum, partially reducing the 

bidirectional transmission of shocks. This pattern implies that IOTA may be moving toward greater 

independence, potentially due to technological advancements or an expansion of its application areas. 

 

 
Figure 7. Direct and reverse total connectedness indices for Ethereum and Cardano 

 

 
Figure 8. Direct and reverse total connectedness indices for Ethereum and IOTA 

 

 
Figure 9. Direct and reverse total connectedness indices for Ethereum and XLM 

 

Figure 9 presents the direct and reverse TCI indices for the XLM-Ethereum pair. The graph reveals 

periodic role shifts: in some periods, Ethereum-driven spillovers dominate, while in others, movements 

originating from XLM become more prominent. This fluctuating structure indicates that XLM’s role in 
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the market is sensitive to cyclical conditions and that there is no stable leader-follower relationship. 

Therefore, dynamic risk-management approaches should be preferred in portfolios that include XLM. 

5. Conclusion and discussion 

 

The findings of this study clearly demonstrate that the relationships between sustainable 

cryptocurrencies and conventional digital currencies exhibit a nonlinear, asymmetric, and market-

regime-dependent structure. In particular, the pronounced increase in total connectedness (TCI) values 

between Ethereum and Cardano in the tail quantiles indicates that information and shock transmission 

intensifies during periods of heightened market stress. This result is consistent with prior studies 

emphasizing that interactions between green and conventional crypto assets strengthen during crisis 

periods (Pham et al. 2022; Sharif et al. 2023; Naeem et al. 2023). By contrast, the relatively lower 

connectedness observed in the middle quantiles suggests partial decoupling under normal market 

conditions, implying that sustainable cryptocurrencies may exhibit a degree of independence during 

calmer periods. 

The results for the Ethereum-IOTA relationship partially diverge from several findings in the existing 

literature. In this study, TCI values remain high not only in the tail quantiles but also across the middle 

quantiles, indicating that the interaction between IOTA and Ethereum is persistent and widespread rather 

than being confined to extreme market conditions. This finding suggests that sustainable 

cryptocurrencies do not uniformly behave as crisis-sensitive assets and that certain tokens may remain 

strongly linked to the core of the conventional crypto market even under normal conditions. This 

outcome aligns with studies emphasizing the heterogeneous nature of sustainable digital assets (Haq and 

Bouri 2022; Vinogradova and Gubareva 2025). Moreover, IOTA’s tendency to respond early to 

Ethereum-driven market signals supports the argument that green crypto assets may exhibit selective 

integration within the broader crypto ecosystem (Umar et al. 2023). 

The results concerning the Ethereum-XLM relationship further reinforce the state-dependent and 

role-shifting perspective highlighted in the literature. Both total and net connectedness measures indicate 

that XLM alternates between acting as a shock receiver and, in some quantile combinations, a modest 

shock transmitter. This heterogeneous structure suggests that sustainable cryptocurrencies do not follow 

a uniform behavioral pattern and may attain systemic relevance under specific market conditions. These 

findings are consistent with earlier evidence showing that the role of green crypto assets varies across 

tail risks and quantiles (Naeem et al. 2023; Deng et al. 2025; Chui et al. 2025). 

Net connectedness results indicate that Ethereum generally assumes a dominant role as an 

information transmitter. The fact that Cardano and IOTA appear as net receivers in most quantile 

combinations supports the literature emphasizing Ethereum’s central position in the crypto ecosystem 

due to its market size, liquidity, and informational depth (Sharif et al. 2023; Abdullah et al. 2025). 

Nevertheless, the presence of weak positive net effects for IOTA and XLM in certain middle and upper 

quantiles suggests that sustainable cryptocurrencies are not entirely passive and can, under specific 

conditions, exert influence on Ethereum. This challenges the notion of a strictly unidirectional and static 

leader–follower structure in cryptocurrency markets. 

The time-varying TCI results strongly confirm the phenomenon of intensified connectedness during 

crisis periods, as emphasized in the literature. For the Ethereum-Cardano pair, the rise in reverse TCI 

during turbulent episodes indicates that information flows become bidirectional under downside market 

conditions. This finding supports studies arguing that sustainable cryptocurrencies are not merely 

passive recipients of shocks but may engage in more complex interactions during periods of extreme 

volatility (Pham et al. 2022; Alshammari et al. 2025). At the same time, the persistence of Ethereum’s 

dominance in the long-run average suggests that systemic hierarchy is weakened but not fully 

eliminated. 

The temporal results for the Ethereum-IOTA and Ethereum-XLM pairs reveal that sustainable 

cryptocurrencies occupy an evolving market position over time. In particular, the recent increase in 

direct TCI for IOTA suggests that it has begun to develop a more autonomous price dynamic relative to 

Ethereum. Similarly, the periodic role reversals observed for XLM indicate a market position that is 

highly sensitive to cyclical conditions. These findings are consistent with recent literature emphasizing 

that sustainable cryptocurrencies exhibit dynamic and context-dependent roles rather than static market 

identities (Vinogradova and Gubareva 2025; Esmaeilian et al. 2024). 
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Overall, the findings of this study show that the relationships between sustainable cryptocurrencies 

and conventional digital currencies are quantile-, time-, and regime-dependent, thereby extending the 

existing literature beyond the insights offered by average-based approaches. By employing the QQC 

framework, this study explicitly uncovers tail risks, directional information transmission, and regime-

specific dynamics that are often overlooked in conventional analyses. In this respect, the study provides 

a more nuanced and comprehensive understanding of the role of sustainable digital assets within the 

broader cryptocurrency ecosystem and makes a meaningful contribution to the existing literature. 

 

6. Policy implications and recommendations 

 

The findings of this study demonstrate that the interaction between sustainable cryptocurrencies and 

conventional digital currencies exhibits a time, quantile, and market regime dependent structure. This 

implies that policy frameworks targeting digital asset markets should move beyond uniform and static 

regulatory approaches and instead adopt flexible and condition-dependent designs. In particular, 

Ethereum’s dominant role as an information transmitter vis-à-vis sustainable cryptocurrencies indicates 

that this asset should be treated as a special case within regulatory frameworks aimed at maintaining 

market stability. From the perspective of regulatory authorities, the intensification of linkages between 

sustainable cryptocurrencies and central digital currencies such as Ethereum during crisis periods 

suggests that channels of systemic risk transmission may be reconfigured through these assets. 

Accordingly, considering sustainable cryptocurrencies as fully insulated or inherently low risk 

instruments during periods of market stress may be misleading. Policymakers should therefore develop 

early-warning and monitoring mechanisms that explicitly account for tail risks and asymmetric 

information spillovers involving sustainable digital assets. 

For investors and portfolio managers, the results indicate that sustainable cryptocurrencies should 

not be viewed unconditionally as safe-haven or hedging instruments. The strengthening of 

connectedness between Ethereum and sustainable cryptocurrencies in extreme quantiles and during 

periods of heightened market stress implies that portfolio diversification benefits may diminish precisely 

when they are most needed. Consequently, portfolio strategies should be designed not solely on average 

relationships, but rather on quantile- and regime-sensitive risk dynamics. From a financial stability 

perspective, the dynamic and time-varying positions of sustainable cryptocurrencies relative to 

Ethereum suggest that these assets can alternately function as passive shock receivers or, under certain 

conditions, as limited shock transmitters. This finding underscores that sustainable cryptocurrencies 

should not be treated as secondary or insignificant market participants within regulatory assessments. 

Instead, their potential to assume systemic relevance under specific market regimes should be explicitly 

recognized. 

Moreover, the evolving market roles of sustainable digital assets imply that regulatory policies must 

be supported by continuous and adaptive updates. Evidence that assets such as IOTA and XLM can, at 

times, develop more autonomous price dynamics relative to Ethereum suggests that sustainable 

cryptocurrencies may gradually evolve into a more independent market segment. In this context, 

regulatory bodies should closely monitor technological developments and changes in market integration 

levels. Finally, in line with broader objectives of digital financial sustainability, policymakers should 

evaluate sustainable cryptocurrencies not merely as an environmental or ethical category, but within a 

framework that explicitly considers their market interactions and systemic risk channels. The findings 

derived from the QQC approach employed in this study demonstrate that such methodologies can 

contribute to more informed, targeted, and evidence-based policy design in digital asset markets. 

Accordingly, policies aimed at regulating sustainable cryptocurrencies should be developed with a 

forward-looking perspective that remains sensitive to evolving market conditions. 

 

7. Limitations and future research 

 

While this study provides important contributions by examining the dynamic connectedness structure 

between sustainable cryptocurrencies and conventional digital currencies within a Quantile on Quantile 

Connectedness framework, it is subject to several limitations. First, the analysis is restricted to 
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sustainable cryptocurrencies represented by Cardano, IOTA, and Stellar, and to a single conventional 

digital currency, namely Ethereum. Although Ethereum’s central role in the cryptocurrency market 

renders this choice methodologically justified, caution should be exercised when generalizing the 

findings to other major cryptocurrencies. Second, although the study employs high-frequency data, the 

sample period is limited to specific market conditions. Given the rapid structural transformation of 

cryptocurrency markets, future studies using longer time spans and covering alternative market regimes 

may provide deeper insights into the temporal evolution of connectedness dynamics. In this respect, 

extending the data horizon could enhance the robustness and generalizability of the results. 

Another limitation relates to the methodological nature of the analysis. While the Quantile on 

Quantile Connectedness approach offers strong insights into the direction and intensity of information 

and shock transmission, it focuses on connectedness rather than causality. Accordingly, future research 

may complement these findings by employing quantile-based causality tests or dynamic structural 

models to allow for stronger causal interpretations. In addition, this study focuses primarily on market-

based data and does not explicitly incorporate external factors such as investor behavior, regulatory 

developments, or technological innovations. Future research could enrich the analysis by integrating 

variables related to environmental awareness, media attention, or regulatory announcements in order to 

better understand the underlying mechanisms driving connectedness structures. 

An important avenue for future research involves a more comprehensive examination of the internal 

interaction networks among sustainable cryptocurrencies themselves. In this study, each sustainable 

asset is analyzed only in a bilateral framework with Ethereum. However, employing multivariate and 

network-based models could reveal the systemic interdependencies among sustainable cryptocurrencies 

and provide a clearer picture of their collective role within the digital financial ecosystem. Finally, from 

a methodological perspective, although the Quantile on Quantile Connectedness approach constitutes a 

powerful analytical tool, combining it with wavelet-based or frequency-decomposed quantile methods 

may yield richer and more nuanced results. Therefore, future studies are encouraged to adopt multi-scale 

and hybrid methodological frameworks to further explore the complex dynamics of sustainable digital 

assets. 
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 Grounding the evaluation of Environmental, Social, and Governance (ESG) 

performance in Stakeholder Theory is increasingly vital, as sustainability 

practices strengthen firms' long-term value creation. Accordingly, this study 

examines the impact of ESG performance on key financial indicators for 50 firms 

listed on the Borsa Istanbul (BIST) Sustainability Index, with data continuity 

spanning the 2019-2020 period. The relationship between ESG scores and 

performance variables such as ROA, ROE, market capitalisation, financial 

leverage, net profit, EBIT, P/B ratio, current ratio, and Tobin’s Q was analysed 

using the XGBoost algorithm to overcome the nonlinear  limitations of traditional 

econometric models. The findings indicate that ESG practices have a more 

pronounced effect, particularly on market based  indicators (e.g., Market Value 

and Tobin’s Q). In contrast, their impact on accounting based indicators (e.g., 

ROA and ROE) remains more limited due to the complexity of internal 

operational transitions. By bridging the gap between machine learning and 

sustainability literature, this study provides a strategic roadmap for investors 

seeking to refine risk assessment through non-financial signals, for corporate 

managers aiming to boost market valuation via stakeholder-centric strategies, and 

for regulatory authorities in designing standardised ESG frameworks to enhance 

transparency and stability in emerging financial markets.  

 

1. Introduction 

 

In recent years, Environmental, Social, and Governance (ESG) issues have attracted significant 

attention from investors and researchers. ESG refers to a set of non-financial factors deemed essential 

for the long-term sustainability and value creation of businesses. These factors are critical in evaluating 

a company's overall performance. In the literature, the concept of ESG is categorised into three main 

components: the environmental dimension, the social dimension, and the governance dimension (De 

Masi et al. 2021; Fahrullah et al. 2024). ESG scores, utilised by investors and data providers to measure 

this performance, gauge the level of data disclosure regarding these areas and are customised for specific 

industrial sectors. 
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These ESG parameters, which are often perceived as technical measurement tools, are actually 

deeply rooted in the normative foundations of Stakeholder Theory, as proposed by Freeman (1994). 

Stakeholder Theory offers a comprehensive approach that integrates the technical aspects of business 

management with its ethical dimension, thereby opposing the "Separation Thesis," which argues that 

business and ethics are distinct domains. From this perspective, the value creation process cannot be 

defined solely by financial results; instead, it must be viewed as a multi-faceted process of compromise 

based on mutual obligations among all parties—investors, employees, customers, and society—

interacting with the business (Freeman 1994). This theoretical framework suggests that a company’s 

true success lies in satisfying all stakeholders, and that ESG activities can create synergy that is 

ultimately reflected in market performance. 

Recent developments in the field of sustainability have necessitated the evaluation of companies not 

only by their financial results but also by their ESG performance. However, despite the growing 

importance of sustainability, empirical findings regarding the relationship between ESG and financial 

performance remain complex and occasionally contradictory. This leads to a critical research problem: 

traditional econometric models often fail to capture the high dimensional and nonlinear relationships 

inherent in ESG data, resulting in a gap in the literature regarding the precise predictive power of 

sustainability practices on different types of financial indicators. This methodological limitation creates 

strategic uncertainty for investors and highlights the necessity for a more robust, analytical approach. 

Driven by this motivation and grounded in Stakeholder Theory, this study aims to fill this gap by 

analytically examining the effect of ESG scores on firm performance for 50 firms listed in the Borsa 

Istanbul (BIST) Sustainability Index between 2019 and 2020. The study formulates the research problem 

explicitly by differentiating between "market based " (e.g., Tobin’s Q, Market Value) and "accounting 

based" (e.g., ROA, ROE) indicators to determine where ESG performance has the most significant 

impact. By utilising the XGBoost algorithm—an innovative machine learning model—this research 

seeks to overcome the linear constraints of previous studies and provide a more accurate guiding 

framework for investors. 

The contribution of this study to the existing literature is twofold. First, it introduces a nonlinear  

methodological shift in the BIST context, demonstrating the superior predictive power of machine 

learning over traditional methods. Second, it provides empirical evidence that ESG performance is more 

strongly reflected in market based  valuations—representing external stakeholder perceptions—than in 

internal accounting records, thereby offering a new theoretical and practical perspective on how 

sustainability value is priced in emerging markets. Following the literature review, the dataset and 

methodology are described, the variables used in the analysis are presented, and the findings are 

subsequently evaluated. 

 

2. Literature review 

 

Studies on the impact of ESG performance on financial indicators and the predictability of this 

relationship have seen a significant increase in recent years. However, the existing literature exhibits a 

high degree of fragmentation, with findings ranging from strong positive correlations to neutral or even 

adverse outcomes, often depending on the methodology and market context employed. These studies 

can generally be categorised into two main groups: those examining the ESG-financial performance 

relationship using traditional econometric methods and those testing predictive power using machine 

learning algorithms. 

Within the first group, traditional empirical studies yield complex and occasionally contradictory 

results. For instance, Yavuz (2023) found a positive and significant relationship between total ESG 

scores and Return on Assets (ROA) in the context of the Borsa Istanbul. Similarly, Fahrullah et al. 

(2024) reported that ESG practices were positively associated with ROA in the Malaysian market. In 

contrast to these optimistic findings, some researchers argue that the relationship is strictly limited or 

sector specific. Şişman and Çankaya (2021) reported that ESG scores generally had no significant effect 

on financial performance in the airline sector. In contrast, Masongweni and Simo-Kengne (2024) 

highlighted a critical inconsistency, noting that while total ESG scores might be ineffective, specific sub 

dimensions, such as Social and Governance, can exhibit positive relationships. This heterogeneity is 
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further supported by Parashar et al. (2024), who emphasised that firm level differences can render the 

ESG-ROE relationship insignificant. 

From a theoretical standpoint, the divergence in findings is often interpreted through the lens of 

Stakeholder Theory. While traditional "shareholder centric" views might see ESG as an added cost, 

Wang (2024) and Nguyen et al. (2022) argue that meeting stakeholder expectations through ESG 

activities enhances corporate reputation and operational efficiency. A pivotal point of discussion in 

recent literature is the debate between the "agency problem" and "stakeholder management" approaches. 

Peng and Isa (2020) demonstrated that ESG activities do not generate agency costs; rather, they create 

consistent value. Furthermore, Habib et al. (2025) recently demonstrated that green financing acts as a 

moderator, suggesting that the ESG-performance link is not direct but influenced by financial structures. 

The inconsistency of results in linear models has driven a methodological shift toward machine 

learning (ML) to decode nonlinear patterns. De Lucia et al. (2020) and Abdelfattah et al. (2025) found 

that ML models, particularly Random Forest, outperform traditional regression in predicting ROA and 

ROE across various countries. While some algorithms, such as XGBoost, have demonstrated high 

accuracy (91%) in specific markets, like China, the literature remains divided on the universal 

applicability of these findings. Dincă et al. (2025) provided a critical counter-narrative, arguing that high 

ESG scores do not necessarily increase financial prediction accuracy outside the service sector. 

Conversely, Sultana and Zeya (2025) used XGBoost to prove that ESG sentiment effectively reduces 

financial risk, highlighting that ML can capture qualitative nuances that traditional econometrics 

overlook. 

Despite this growing body of work, a clear research gap remains. Most studies in the BIST context 

continue to rely on traditional linear models, which fail to account for the multidimensional and 

nonlinear interactions between ESG components and diverse financial metrics. Moreover, there is a lack 

of comparative analysis that distinguishes between the predictive power of ESG on market based versus 

accounting based indicators, using high performance ensemble algorithms such as XGBoost. This study 

aims to fill this gap by providing a comprehensive, nonlinear evaluation of BIST listed firms, moving 

beyond descriptive analysis to analytically demonstrate how market actors prioritise sustainability 

signals compared to internal financial reporting. 

 

3. Data and methodology 

 

This study covers the annual data of 50 firms listed on the Borsa Istanbul (BIST) Sustainability Index, 

with data continuity for the period from 2019 to 2020. The selection of this specific time period and 

sample is strategically determined by the availability of consistent ESG scores and financial data across 

the DataStream platform for BIST companies, ensuring a balanced panel that avoids survivorship bias. 

By focusing on the BIST Sustainability Index, the study ensures that the included firms are already 

committed to non-linear ESG disclosures, providing a robust basis for analysing the impact of these 

practices on financial performance. 

The primary objective of this study is to investigate the impact of ESG scores on firm performance 

using the XGBoost (Extreme Gradient Boosting) algorithm. The selection of the dependent variables—

ROA, ROE, Tobin’s Q, Market Value, Financial Leverage, Net Profit, EBIT, and P/B Ratio—is 

rigorously grounded in the established literature on corporate finance and sustainability. Specifically, 

these metrics are chosen to provide a dual perspective: accounting based measures (ROA, ROE, Net 

Profit) reflect internal operational efficiency and historical performance, while market based  measures 

(Tobin’s Q, Market Value, P/B) capture external investor expectations and the pricing of sustainability 

signals. This comprehensive set of variables enables an analytical comparison of how ESG performance 

permeates various layers of financial reporting and valuation. 

In this context, the dependent and independent variables used in the analysis process, along with their 

descriptive information, are presented in Table 1. The rationale for selecting the XGBoost algorithm 

over traditional linear methods or other machine learning models is based on several distinct advantages. 

Developed by Chen and Guestrin (2016), XGBoost is an ensemble learning method that carries out the 

prediction process through a combination of sequential decision trees. Unlike traditional multiple linear 

regression, which assumes a linear relationship and is sensitive to multicollinearity, XGBoost's tree 

based structure is inherently resistant to multicollinearity issues often found between ESG sub-
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components. Furthermore, XGBoost utilises gradient information and regularisation mechanisms (L1 

and L2) to minimise loss functions while preventing overfitting, which significantly enhances the 

model's generalisation power compared to simpler models. Its ability to efficiently process high 

dimensional  datasets and capture complex, nonlinear interactions makes it a superior tool for decoding 

the nuanced relationship between sustainability and firm performance. 

 
Table 1. Variables used in the study  

Variables Abbreviation Description 

Dependent Variables  

Return on Assets ROA Net Income / Total Assets 

Return on Equity ROE Net Income / Equity 

Tobin’s Q TQ (Market Value+Total Debt) / Total Assets 

Market Value MV Share Price x Number of Shares 

Financial Leverage LEV Total Debt / Total Assets 

Net Profit NETPRO Net Income / Net Sales 

Earnings Before Interest and Taxes EBIT Net Income + Interest Expenses + Tax Expenses 

Market-to-Book Ratio P / B Market Value / Equity 

Control Variable 

Current Ratio CR Current Assets/Current Liabilities 

Independent Variables 

ESG Score ESG Environmental + social + Governance 

Environmental Score E Environmental Pillar score 

Social Score S Social Pillar Score 

Governance Score G Governance Pillar Score 

 

The ratios utilised to determine firm performance were selected based on the relevant literature (Velte 

2017; Konak and Çıtak 2018; Gregory 2021; Konak and Türkoğlu 2022; Bui et al. 2023; Yenisu and 

Türkoğlu 2023; Zulnisyam et al. 2025). Financial performance valuation frequently employs metrics 

such as Market Value, Financial Leverage, Net Profit, Earnings Before Interest and Taxes (EBIT), tree 

based (P/B), Current Ratio (CR), and Tobin’s Q. These metrics provide significant outputs regarding 

both accounting based and market based firm performance (Mahfirah et al. 2025). 

In this regard, Return on Assets (ROA) is used to measure the firm's general operational efficiency 

level as it reflects the ability to generate income through all its assets (Jonnius and Marsudi 2021). 

Indicating the effectiveness of economic resources allocated to the business, ROA is calculated by 

dividing net income by the total assets used in the business during the reporting period (Al-Sa 2018). 

Another variable, Return on Equity (ROE), is calculated by dividing net income after taxes by average 

equity. This critical measure reveals the profit generated for each unit of equity after taxes are taken into 

account. Furthermore, ROE is a reflection of the operational status of the business and the efficiency 

with which invested capital is managed; a higher ROE indicates increased profitability and substantial 

business value (Ebaid 2009; Yang et al. 2010; Bui et al. 2023).  

Tobin’s Q, used as a measure of firm value, is obtained by dividing the sum of market value, total 

liabilities, preferred stock, and minority interest by total assets (Panaretou 2014; Wong et al. 2021). In 

evaluation, a value lower than 1 implies that the market values the firm lower than the sum of its assets. 

In contrast, a value higher than 1 indicates that the firm's market value exceeds the sum of its assets due 

to unrecorded factors such as brand equity (Butt et al. 2023). 

Regarding other financial indicators: Market Value refers to the product of share price and total 

number of outstanding shares; Financial Leverage is the ratio of total debt to total assets; Net Profit 

(Margin) is the ratio of net profit to net sales; EBIT is the sum of net profit, interest expenses, and tax 

expenses; P/B Ratio is the ratio of the company's market capitalization to equity; and Current Ratio 

(CR), included as a control variable, expresses the ratio of current assets to current liabilities. 

The descriptions and formulas for the performance metrics (Root Mean Square Error) RMSE and 

Mean Squared Error (MSE) used to evaluate the results of the XGBoost algorithm applied within the 

scope of these variables are presented in Table 2 (Saloo et al. 2024). 
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Table 2. Performance Measurement Metrics of Developed Models  

Performance Criteria Definition Formula 

Root Mean Square 

Error (RMSE) 

It is a metric indicating the magnitude of error. A 

lower RMSE indicates that the model's predictions 

are closer to the actual data. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)2
𝑛

𝑖=1

 

 

Mean Squared Error 

(MSE) 

It penalizes large errors by taking the average of 

squared errors; thus, a lower MSE is considered to 

indicate a better model. 
𝑀𝑆𝐸 =

1

𝑛
√∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

 

 

3.1. XGBoost model 

 

Developed by Chen and Guestrin (2016), XGBoost (eXtreme Gradient Boosting) is a method 

employing an ensemble learning approach, carrying out the prediction process through a combination 

of sequential models composed of decision trees. The algorithm utilises gradient information to 

minimise the loss function and also leverages the second derivatives (Hessian) of the loss function to 

optimise the model more precisely. Furthermore, it incorporates regularisation mechanisms to limit the 

problem of overfitting. These features enhance both the generalisation power and the prediction 

performance of XGBoost. The method has gained wide acceptance in the literature due to its ability to 

process high dimensional datasets efficiently and its relatively fast interpretation (Sarker 2021). 

The objective function and the regularization term of the XGBoost algorithm are generally 

formulated as follows in Equation (1) (Oukhouya et al. 2024): 

 

𝐿 = (𝜙) =∑𝑙((𝑦𝑖, 𝑦𝑖̂))

𝑖

+∑Ω(𝑓𝑘)

𝑘

 (1) 

 

Here, the regularisation term Ω is expressed as: 

 

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2 (2) 

 

In this Equation (2) 𝑙 represents the differentiable convex loss function, 𝑇 denotes the number of leaf 

nodes in the tree, 𝜔 represents the score vector (weights) in the leaf nodes, 𝛾 is the complexity penalty 

parameter associated with the number of leaf nodes, 𝜆 denotes the regularisation parameter. 

 

4. Empirical results 

 

The impact of ESG scores on firm performance was analysed using the XGBoost algorithm on a 

dataset of 50 BIST Sustainability Index firms. Prior to analysis, data were normalised, and 

hyperparameters were optimised using the GridSearchCV method to ensure model robustness. 

 

4.1. Descriptive statistics and correlation analysis 

 

As shown in Table 3, the average ESG performance of the sampled firms is 72.03. Detailed sub-

component analysis reveals that firms achieve their highest performance in the Social dimension (Mean: 

78.83) and their lowest in Governance (Mean: 62.71). Regarding financial metrics, the ROE exhibits 

higher average values (22.41%) compared to the ROA (12.22%), although significant heterogeneity is 

evident, as indicated by the high standard deviations. 

The correlation heatmap (Figure 1) provides critical preliminary evidence: while total ESG scores 

correlate highly with their sub-components, their interaction with financial indicators varies 

significantly. Specifically, ESG components show stronger visual associations with Market Value (MV) 
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and EBIT compared to ratio-based indicators like ROA or Tobin’s Q. This suggests that ESG signals 

may have a more immediate reflection on market based metrics than on internal accounting profitability. 

In this study, the impact of ESG scores on firm performance was analysed using the XGBoost 

algorithm, which utilised 6 years of data from 50 firms listed in the BIST Sustainability Index for the 

period from 2019 to 2020. To prevent data leakage, the data were first sorted chronologically. 

Subsequently, the data were normalised to avoid biases arising from scaling discrepancies. To maximise 

the model's prediction accuracy, hyperparameter optimisation was performed using the GridSearchCV 

method. Following the pre-processing steps, the dataset was split into 70% training and 30% testing 

sets. Descriptive statistics regarding the variables used in the analysis are presented in Table 3. 

 
Table 3. Descriptive statistics 

Variables N Mean Std.Dev. Min 25%(Q1) Median 75%(Q3) Max 

TQ 300 0.3206 0.1789 0.0031 0.1712 0.3122 0.4376 0.9039 

ROA 300 12.2281 11.2757 -17.6900 6.1400 10.0100 16.4900 93.7900 

ROE 300 22.4137 48.4935 -349.1000 8.4100 19.5750 39.7750 242.5600 

MV 300 9.8044 1.4542 6.3319 8.7637 9.8947 10.7521 13.0785 

FKAL 300 0.3190 0.1798 0.0016 0.1704 0.3112 0.4371 0.9037 

ESG 300 72.0312 14.0749 16.0200 64.7850 74.4650 82.0125 94.9800 

E 300 71.5387 19.1112 3.4500 62.3375 72.3900 86.1300 99.1300 

S 300 78.8312 16.0579 15.4300 70.8100 83.5400 91.3675 97.4000 

G 300 62.7110 17.3348 9.0500 52.3750 63.4650 75.8400 94.3100 

NETPRO 300 9.5306 17.7234 -94.5300 2.9225 7.9900 13.6675 160.6100 

EBIT 300 9,650,724 20,541,540 -6,957,011 801,033 3,268,784 8,792,180 178,861,000 

PB 300 2.3877 18.2418 -210.9200 1.0000 1.5050 2.5650 227.9700 

CR 300 1.2768 0.6334 0.3100 0.8900 1.1400 1.4225 5.3800 

 

Upon examining the descriptive statistics presented in Table 3, it is observed that the average ESG 

performance of the firms is 72.03. When the sub-components are detailed, it is noteworthy that firms 

exhibit the highest performance in the Social (S) dimension (Mean: 78.83), followed by the 

Environmental (E) dimension (Mean: 71.53). In contrast, the lowest performance occurs in the 

Governance (G) dimension (Mean: 62.71). 

Regarding financial indicators, Return on Equity (ROE) follows a higher trend with an average of 

22.41% compared to Return on Assets (ROA) (12.22%). However, the high standard deviation values 

in the ROE and P/B variables, along with the wide range between the minimum and maximum values 

(especially the variation in ROE, which ranges from -349.10 to 242.56), indicate significant 

heterogeneity among the sampled firms in terms of financial structure and profitability. The fact that the 

Tobin’s Q (TQ) average is 0.32 may imply that firms' market values are priced below their replacement 

costs. The Current Ratio (CR), included as a control variable, has an average of 1.27, indicating that the 

firms' short-term debt repayment capabilities are generally at a reasonable level. 

Figure 1 shows the correlation heatmap provides a visualisation of the direction and strength of the 

relationships between ESG components and firm performance variables. The colour distributions and 

patterns of the matrix clearly reveal the intensity of relationships between variable sets. Upon examining 

the heatmap, the most prominent finding is the expected high positive correlation (bright yellow areas) 

between the total ESG score and its sub-components (Environmental, Social, Governance). However, a 

more critical finding regarding the study's focus is the interaction between ESG scores and financial 

indicators. The visual indicates that lighter colour tones (orange/red) dominate the intersection points of 

ESG and its sub-components with Market Value (MV) and EBIT variables; conversely, the relationship 

with ratio-based indicators such as ROA, ROE, and Tobin’s Q (TQ) remains weaker (dark purple). 

This visual evidence supports the thesis, which will be detailed in the analysis section, that ESG 

practices have a more pronounced reflection on firms' market value (MV) compared to accounting 

profitability (ROA/ROE). Furthermore, while the high correlation (multicollinearity) between ESG sub-

components could lead to biases in traditional models such as linear regression, the XGBoost algorithm 
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preferred in this study allows for more reliable predictions by exhibiting resistance to such 

multicollinearity issues thanks to its tree based structure. 

 

 
Figure 1. Correlation heatmap between variables 

 

4.2. XGBoost prediction results 

 

The models were trained using extended feature sets that included lagged variables, firm fixed 

effects, scale transformations, and ESG components. For each dependent variable, model success was 

evaluated using R2, MSE, and RMSE metrics, and optimal hyperparameters determined via 

GridSearchCV were reported (Table 4). 

 
Table 4. Analysis findings and best hyperparameters 

Dependent 

Variables 
R² MSE RMSE Best Hyperparameters 

TQ 0.7630 0.003375 0.0581 
colsample_bytree=0.8, learning_rate=0.05, max_depth=3, 

n_estimators=400, subsample=0.8 

ROA 0.4194 55.1672 7.4275 
colsample_bytree=0.8, learning_rate=0.05, max_depth=5, 

n_estimators=400, subsample=0.8 

ROE 0.1345 1549.9335 39.3692 
colsample_bytree=0.8, learning_rate=0.05, max_depth=3, 

n_estimators=400, subsample=0.8 

MV 0.9982 0.003685 0.0607 
colsample_bytree=1.0, learning_rate=0.05, max_depth=5, 

n_estimators=400, subsample=1.0 

FKAL 0.7763 0.005738 0.0757 
colsample_bytree=0.8, learning_rate=0.05, max_depth=3, 

n_estimators=400, subsample=0.8 

NETPRO 0.1988 137.1071 11.7093 
colsample_bytree=0.8, learning_rate=0.01, max_depth=5, 

n_estimators=200, subsample=0.8 

EBIT 0.8228 0.4693 0.6851 
colsample_bytree=1.0, learning_rate=0.05, max_depth=3, 

n_estimators=400, subsample=0.8 

PB 0.6246 0.1037 0.3220 
colsample_bytree=0.8, learning_rate=0.01, max_depth=3, 

n_estimators=400, subsample=0.8 

 

Upon examining Table 4, the high R2 values obtained, particularly for MV (0.9982) and EBIT 

(0.8228), are noteworthy. In machine learning models, such high explanatory power often raises 

concerns regarding the risk of "overfitting". However, the fact that model performance in this study is 

reported on the test set rather than the training data, and that hyperparameters were determined under 

cross-validation using GridSearchCV, indicates that this result stems from the strong autoregressive 

structure of the relevant variables (the power of past data to explain the present) rather than model 

memorisation. 
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Evaluating the findings by variable, it is observed that the Market Value (MV) model achieved almost 

perfect explanatory power. The inclusion of lagged variables and firm fixed effects allowed the model 

to capture the structural dynamics of market value. This confirms the theoretical expectation that market 

value is highly dependent on past information and historical trends. Similarly, the Tobin Q (TQ) model 

(R2 = 0.763) provided high accuracy. The use of ESG components alongside lagged financial indicators 

enabled a robust prediction of the market to book ratio, supporting the view that TQ is a market based 

metric reflecting ESG sensitivity. 

Conversely, more limited results were obtained for accounting based indicators. While a moderate 

explanatory power (R² = 0.419) was observed for Return on Assets (ROA), it is understood that 

operational efficiency is more closely related to internal cost structures and management decisions than 

to ESG. The Return on Equity (ROE) and Net Profit (NETPRO) models exhibited the lowest 

performance (R2 < 0.20). The high volatility of ROE and Net Profit items, along with their excessive 

susceptibility to periodic shocks and accounting policies, makes it difficult to predict these variables 

using external factors and ESG scores. 

In conclusion, the findings reveal that market based performance indicators (MV, TQ, EBIT, LEV) 

can be predicted with high accuracy using machine learning models. In contrast, the predictability of 

accounting based metrics (ROA, ROE, NETPRO) remains more limited. This divergence is consistent 

with views in the literature suggesting that the impact of ESG is concentrated on investor perception and 

market valuation rather than financial statements. 

 

5. Discussion 

 

The empirical findings of this study offer significant theoretical, methodological, and inferential 

implications for the sustainability literature. The high predictive accuracy of ESG scores regarding 

market based variables (MV, TQ, and EBIT) provides strong empirical support for Stakeholder Theory. 

The superior performance of market based models suggests that external stakeholders and investors 

perceive ESG performance as a critical indicator of long term value creation. This aligns with the 

findings of Nguyen et al. (2022), who observed that ESG impacts on Tobin’s Q are significantly higher 

than those on ROA or ROE in the S&P 500. Our results confirm this trend in an emerging market context 

(BIST), reinforcing the "Stakeholder-Oriented" view that ethical and transparent practices make firms 

more attractive to investors, thereby rapidly increasing market valuation. Conversely, the limited 

predictability of accounting based metrics (ROA, ROE) suggests that the transition from sustainability 

practices to internal operational profitability is a more complex and long-term process. This finding is 

consistent with Yavuz (2023) and Liu and Fill (2025), who argued that ESG’s primary impact is on 

market perception rather than immediate financial statements. 

The inferential implication here is that while ESG may not yield short-term accounting profits, it 

serves as a robust signal of financial resilience and lower risk, as supported by Sultana and Zeya (2025). 

From a methodological perspective, the success of the XGBoost algorithm in this study demonstrates 

the necessity of utilising nonlinear models to decode ESG data. Traditional linear regressions often 

suffer from multicollinearity between ESG sub-dimensions; however, XGBoost's tree based structure 

effectively manages these dependencies, providing more reliable predictions. The high R² values for 

Market Value and EBIT are attributed to the model's ability to capture the strong autoregressive structure 

and firm-specific fixed effects. This implies that current financial performance is deeply rooted in 

historical trends and structural characteristics, which, when combined with current ESG signals, provide 

a robust framework for forecasting future performance. These results challenge the critical view of 

Dincă et al. (2025) by demonstrating that, in the BIST context, ESG scores indeed significantly enhance 

the accuracy of financial forecasts when modelled using advanced machine learning techniques. 

 

6. Policy implications and future research 

 

The findings of this study offer concrete and actionable insights for regulatory authorities, corporate 

decision-makers, and market participants, while also identifying the boundaries of the current research 

and directions for future inquiry. 
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6.1. Policy implications 

 

For policymakers and regulatory authorities, the high predictive power of ESG signals on market 

valuation underscores the need for a more structured and transparent sustainability ecosystem. It is 

recommended that authorities, such as the Capital Markets Board of Turkey (SPK), work toward 

standardising sustainability reporting practices to eliminate information asymmetry. Uniform reporting 

standards would allow investors to access comparable data, leading to more efficient pricing of 

sustainability performance in the BIST. To promote the broader adoption of ESG practices, governments 

should expand tax advantages, green financing instruments, and credit support. Lowering the cost of 

capital for high-performing ESG firms would alleviate the initial cost burden of sustainability 

investments and encourage long-term commitment. For corporate decision-makers and managers, the 

study demonstrates that ESG is not merely an ethical choice but a strategic tool for value creation. Since 

the findings reveal that ESG practices have a pronounced effect on market based indicators, managers 

should treat sustainability disclosures as a primary signalling mechanism to attract long-term 

institutional investors. Incorporating ESG into the core business strategy can serve as a buffer against 

market shocks, enhancing financial resilience and reducing perceived risk among external stakeholders. 

 

6.2. Limitations and future research 

 

Despite its contributions, this study has several limitations that should be acknowledged. The analysis 

is limited to 50 firms in the BIST Sustainability Index, for which data continuity is available for the 

2019-2020 period. This narrow timeframe may not fully capture the long-term, multi-year lags between 

ESG investments and their eventual reflection on internal accounting profitability (ROA/ROE). While 

XGBoost provided superior predictive power, the study primarily focuses on numerical financial data 

and does not incorporate qualitative factors such as ESG sentiment or text-based disclosures. Future 

studies could compare machine learning models, such as XGBoost, with deep learning architectures, 

like LSTM or CNN, to determine if these techniques offer even higher accuracy in forecasting financial 

trends. Expanding the dataset to cover a longer time series (e.g., 10 years) would help reveal the long-

term "pay-off" period of sustainability practices on accounting based performance metrics. 
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 This study aims to evaluate the sustainability performance of countries within a 

multidimensional framework, considering not only environmental and social 

outcomes but also the level of uncertainty related to sustainability policies. To this 

end, ESG-based Sustainability Uncertainty Index (SUI/ESGUI), per capita CO₂ 

emissions, Gini coefficient, renewable energy consumption (API), Environmental 

Performance Index (EPI), Sustainable Development Score (SDG), Human 

Development Index (HDI) and Rule of Law Index (WGI) data for 25 countries for 

the year 2023 were used. The criteria weights in the study were determined using 

CRITIC, an objective method based on the information content of the dataset; 

subsequently, the countries' relative sustainability performances were ranked 

using the EDAS method. Research findings reveal that the most decisive factors 

in distinguishing sustainability performance are the Rule of Law and 

Sustainability Uncertainty; Sweden leads with low uncertainty and high ESG 

performance, while Russia, China, and the US, which struggle with high 

emissions and policy uncertainty, are at the bottom of the list; This situation 

demonstrates that environmental improvements alone are not sufficient to achieve 

sustainable development goals; improving institutional quality and reducing 

policy uncertainty are also critical.  

 

1. Introduction 

 

The study examines different approaches to assessing countries' sustainability performance based on 

the SUI and ESG indicators. Country sustainability will be addressed from a multifaceted perspective, 

not only based on existing measurement methods and indicators but also by considering the uncertainty 

associated with sustainability. This will provide a more comprehensive discussion of the existing 

academic and methodological framework for measuring sustainability. 

Today, the global climate crisis has evolved beyond being merely an environmental problem and has 

become a multifaceted threat, intertwined with social inequalities, democratic regression, the feasibility 

of achieving sustainable development goals, and the impact of international regulations, such as the 

Paris Agreement. Therefore, measuring countries' sustainability performance should extend beyond 
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environmental indicators to include social and governance elements, such as social justice, human 

development, institutional capacity, and income distribution. Given the interconnected and 

interdisciplinary nature of sustainability, this holistic approach is crucial for understanding the impacts 

on countries' well-being. 

Recent academic studies have revealed that the dynamic interaction between the climate crisis, 

inequality, and sustainability is becoming increasingly apparent. The literature emphasizes that the 

impacts of the climate crisis are not reflected equally across all segments of society, and that 

disadvantaged groups (women, children, the elderly, people with disabilities, and low-income 

populations) are disproportionately affected by this process. Çolakoğlu (2023) study also highlights this 

situation, revealing that these groups, which contribute least to climate change, are exposed to the 

greatest negative impacts, and that children, in particular, are the most vulnerable to the adverse effects 

of the climate crisis. This clearly demonstrates that social justice and human rights-based indicators 

cannot be ignored in the assessment of sustainability performance. 

Multidimensional issues such as sustainable development, environmental quality, human 

development, governance capacity and income inequality occupy a central place in today's global policy 

agenda; there is an increasing need for indices that can measure the economic, social and institutional 

performance of countries in a comparable manner to monitor progress in these areas (UNDP 2024). In 

this context, the SDG Index, which tracks holistic progress towards sustainable development goals; the 

EPI, which assesses environmental performance across dimensions of air quality, climate, biodiversity, 

and resource management; the HDI, which combines life expectancy, education, and income; the WGI, 

which cover dimensions such as the rule of law, control of corruption, and democratic accountability; 

the Gini coefficient, which measures income inequality; and data sets on production-related CO₂ 

emissions stand out as key indicators that enable multidimensional analyses of countries' sustainability 

and development performance (Wolf et al. 2022; Kaufmann et al. 2010; World Bank 2024b; 

Friedlingstein et al. 2025). However, each of these indicators ranks countries along a specific dimension; 

therefore, they do not provide a holistic measurement framework encompassing all elements of 

sustainability. Each index prioritizes its own focus, making comprehensive sustainability analysis 

difficult. 

On the other hand, sustainability is a multifaceted concept that requires the simultaneous 

consideration of economic growth, environmental protection, and social well-being (UN 2015). 

Therefore, the applicability and effectiveness of sustainability policies are closely related not only to 

their content but also to the level of uncertainty surrounding these policies (Baker et al. 2016). In recent 

years, the impact of uncertainty regarding sustainability policies on investment decisions, market 

expectations, and perceptions of country risk has been increasingly discussed (Hu et al. 2023; Liang et 

al. 2022; Wang et al. 2023). The SUI, developed in this context, is a crucial tool that facilitates the 

systematic monitoring of the level of uncertainty surrounding sustainability policies in countries (Ongan 

et al. 2025). 

This study aims to analyze countries using a CRITIC-EDAS-based Multi-Criteria Decision-Making 

(MCDM) approach, combining indicators such as SUI, CO₂ emissions, the Gini coefficient, API, EPI, 

SDG, HDI, and WGI, to assess their sustainability performance from a multidimensional perspective. 

This will provide a more objective, comparable, and analytical framework for presenting the relative 

sustainability performance of countries. 

One of the unique contributions of this study is its joint assessment of sustainability performance not 

only through level indicators (SDG Index, EPI, HDI, WGI, Gini, CO₂, etc.) but also through the SUI 

(ESGUI) index, which reflects the extent of uncertainty related to sustainability policies. While the 

number of SUI/ESGUI-based studies in the literature is quite limited, this study integrates this index 

into a MCDM approach to analyze countries' sustainability performance holistically along the "level + 

uncertainty" axes. Thus, while traditional indicators reflect only environmental, social, and institutional 

outcomes, the SUI (ESGUI) index integrates policy uncertainty, which shapes these outcomes, into the 

model. In this respect, the study offers a unique contribution to the literature as one of the rare empirical 

applications that considers sustainability performance and sustainability uncertainty within the same 

framework. 

In this regard, the subsequent sections of the study are structured as follows: The following section 

summarizes the relevant literature focusing on indicators such as sustainability uncertainty, 

environmental performance, income inequality, and governance, and outlines the theoretical framework 
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of the study. In the methodology section, the scope of the SUI, CO₂, Gini, API, EPI, SDG, HDI, and 

WGI data sets used in the analysis is defined, the rationale for the selection of criteria is explained, and 

the application steps of the integrated CRITIC-EDAS approach are detailed. The findings section 

presents the relative sustainability rankings of countries, along with sensitivity analyses supported by 

Monte Carlo simulations that test the model's consistency. The conclusion section discusses the findings 

in comparison with the existing literature, develops concrete recommendations for policymakers, and 

provides directions for future studies. 

 

2. Literature review 

 

Multidimensional indicators, including sustainability uncertainty, environmental pressure, income 

distribution equity, renewable energy transition, environmental performance, sustainable development 

achievement, human development level, and rule of law, were used to analyze countries' sustainability 

performance. To this end, Table 1 systematically summarizes the definitions of each criterion used in 

the study: SUI/ESGUI, per capita CO₂ emissions, Gini index, API, EPI, SDG, HDI, and WGI, along 

with selected empirical studies based on these indicators. This provides the theoretical basis for the 

multidimensional sustainability framework used in the analysis. 

 
Table 1. Criterion-Based Literature Table 

Criterion Definition Selected Study 

ESGSUI – 

ESG-based 

Sustainability 

Uncertainty 

Index 

The ESGUI is a text-mining-based 

composite index developed to measure 

countries' sustainability-related uncertainty 

levels. First proposed by Ongan et al. (2025), 

the index calculates three sub-indices based 

on the frequency of keywords related to 

environmental (E), social (S), and 

governance (G) selected from the monthly 

country reports of the Economist 

Intelligence Unit (EIU). An uncertainty sub-

index derived from phrases such as 

"uncertain/uncertainty" in the same reports 

is added. These four components are 

normalized and scaled to a range of 0-100, 

producing monthly ESGUI series for 25 

countries. Global ESGUI indices are also 

generated using equally weighted and GDP-

weighted averages of the country series 

(policyuncertainty.com). 

Ongan et al. (2025) utilize a new indicator called N-

ESG, which is derived by subtracting ESGUI from ESG 

scores; thus, they argue that the ESG performance of 

firms/countries should be adjusted to account for 

sustainability uncertainty. ESGUI is used here as a 

quantitative measure of sustainability uncertainty. 

Nyakurukwa et al. (2025) examine the global and 

regional spread of ESG policy uncertainty, utilizing 

ESGUI as a new composite sustainability uncertainty 

indicator to analyze how the developed ESG policy 

uncertainty indicators are disseminated across 

developed and emerging markets. Zeren et al. (2025), 

taking ESGUI as the dependent variable for G7 

countries, analyze the macroeconomic, financial, and 

institutional determinants of sustainability uncertainty 

using asymmetric Fourier methods. Anbea et al. (2025) 

use ESGUI as an indicator of "ESG sustainability 

uncertainty" while examining the relationship between 

energy preferences and ESG sustainability in developed 

economies. They test the effects of energy preferences 

and education/integration policies on sustainability 

uncertainty. Gaies (2025) analyze the interaction 

between financial instability and climate risks using the 

U.S. ESG-based Sustainability Uncertainty Index 

(ESGUI) series for the United States, demonstrating that 

ESGUI serves as a macro uncertainty indicator that can 

reveal the sensitivity of financial markets to 

sustainability shocks. 

CO₂ – CO₂ 

Emission per 

capita 

Per capita CO₂ emissions are measured as 

the ratio of carbon dioxide emissions from 

fossil fuel consumption and cement 

production to the country's population in 

tonnes per capita. This indicator, reported in 

the World Bank's World Development 

Indicators (WDI) database, is designated by 

the code EN.ATM.CO2E.PC is considered a 

key measure of environmental pressure 

(World Bank 2024a). 

Per capita CO₂ emissions are used as one of the main 

variables representing environmental pressure in global 

sustainability and competitiveness studies; for example, 

Agan (2024) uses the per capita CO₂ series from WDI in 

his analysis of global sustainable competitiveness and 

environmental sustainability. In addition, in multi-

criteria or panel-based studies, such as those by Guijarro 

and Poyatos (2019) and Agan (2024), CO₂ is considered 

an integral component of composite indices that evaluate 

the environmental performance of countries. Akpolat 

(2024) examines the relationship between CO₂ per capita 

emissions, fossil, API, and sustainability using panel 

data. Rosa and Jadotte (2023) analyzes the determinants 

https://policyuncertainty.com/
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of per capita CO₂ emission inequality among developing 

countries. Liu et al. (2023) examine the dynamics of 

infrastructure development, HDI, and per capita CO₂ 

emissions. Shabani (2024) examines the impact of API 

and human capital on CO₂ emissions using panel data, 

showing that renewable energy reduces emissions while 

human capital strengthens this relationship. Nguyen et 

al. (2025) analyze the impact of digital infrastructure and 

renewable energy on CO₂ emission intensity for 217 

countries, finding that the growth of digital 

infrastructure and renewable energy reduces emission 

intensity. Pal et al. (2025) demonstrate the short- and 

long-term effects of economic indicators, API, and HDI 

on carbon emissions in selected Asian countries using 

panel ARDL. 

GINI – Poverty 

and Income 

Inequality 

Index 

The Gini index is an indicator measuring the 

degree to which income distribution deviates 

from perfect equality, taking values between 

0 (perfect equality) and 100 (perfect 

inequality). It is reported by the World Bank 

as "Gini index (World Bank estimate)" with 

the code SI.POV.GINI; the index is 

calculated using the Lorenz curve of income 

or consumption distribution based on 

household survey data (World Bank 2024b). 

The Gini index is widely used as a basic measure of 

income distribution equity in studies of sustainable 

development and inequality. For example, Makhlouf 

(2023) examines the income inequality dynamics of 34 

countries for the period 1960-2020 using the Gini index 

and discusses the relationship between inequality trends 

and the Sustainable Development Goals. World Bank 

data are also used as a standard data source in empirical 

analyses of the inequality dimension within the 

framework of SDGs (Makhlouf 2023; World Bank 

2024b). Haddad et al. (2024). Discusses the 

interpretation of the Gini coefficient in the context of the 

World Bank "new inequality indicator". Bi (2020) 

evaluates the sustainable development performance of 

countries by integrating the Gini coefficient into the 

human sustainable development index. Dvulit et al. 

(2025) examine the relationship between SDG 3 (Health 

and Well-being) and SDG 10 (Reduced Inequalities) for 

the EU and Ukraine in the period 2009-2021, using 

classification, clustering, and regression analyses on the 

Gini coefficient. The results show that a decrease in 

income inequality improves health indicators. 

API – 

Renewable 

Energy 

Consumption 

API is a percentage indicator that shows the 

share of renewable energy sources (such as 

hydro, wind, solar, and biomass) in total 

final energy consumption. It is presented as 

"API (% of total final energy consumption)" 

in the World Bank WDI database with the 

code EG.FEC.RNEW.ZS (World Bank 

2024c). 

This indicator is widely used in the energy transition, 

green growth, and environmental sustainability literature 

to measure the level of countries' transition to low-

carbon energy systems. Maji and Sulaiman (2019) use 

this indicator when analyzing the relationship between 

API and economic growth in West African countries. Xu 

and Gallagher (2022) use API rates in their study 

examining the role of development finance institutions 

in green energy transition. Liao (2023) use the API rate 

as the main indicator for the sustainable impacts of green 

energy projects. Chuong (2025) analyze the relationship 

between globalization, renewable energy, and 

sustainable development for 104 countries, with API 

serving as the primary determinant. Shabani (2024) 

examines the relationship between renewable API 

energy consumption and CO₂, and by including human 

capital in the model, they emphasize the emission-

reducing effect of increasing the renewable energy share. 

Nguyen et al. (2025) test the role of API in reducing CO₂ 

emission intensity separately for countries in different 

income groups. Pal et al. (2025) confirm that API 

significantly reduces carbon emissions in the long run, 

as indicated by panel ARDL and FMOLS/DOLS results. 

EPI – 

Environmental 

Performance 

Index 

The EPI is a composite index that 

summarizes countries' environmental 

performance on a scale of 0-100, combining 

more than 50 indicators across areas such as 

climate change, environmental health, and 

ecosystem vitality. Published biannually by 

The EPI is frequently used in comparing countries' 

environmental performance and in multi-criteria 

assessments focused on environmental sustainability. 

Guijarro and Poyatos (2019) utilize EPI components 

when evaluating countries' environmental performance 

using a MCDM approach; Ekinci and Oturakçı (2025) 
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the Yale University Center for 

Environmental Law and Policy and 

Columbia University, the EPI is a 

comprehensive measure that shows how 

well countries are approaching their 

environmental policy goals (Block et al. 

2024; Yale Center for Environmental Law 

and Policy, 2024). 

analyze Turkey's environmental performance using the 

EPI index values. Recently, the EPI has become a 

reference index whose sensitivity to different 

normalization and weighting scenarios has been debated 

(Ekinci and Oturakçı 2025; Guijarro and Poyatos 2019). 

Pinar (2022) analyze the EPI's sensitivity to different 

normalization and weighting methods. Wendling et al. 

(2022) propose a framework for explaining countries' 

environmental performance based on the EPI. They 

analyze the effects of determinants such as governance, 

income level, and structural factors on the EPI and 

discuss how the EPI can be used for policy design. 

SDG – 

Sustainable 

Development 

Score 

The SDG Index is a composite index that 

combines numerous social, economic and 

environmental indicators related to the 17 

Sustainable Development Goals to produce 

a SDG and ranking for countries on a scale 

of 0-100. It is prepared by the Sustainable 

Development Solutions Network (SDSN). 

Sustainable Development Report series is 

updated every year (Sachs et al. 2023). 

The SDG Index has become one of the main reference 

indicators for comparatively analyzing country progress 

towards the SDGs. Sachs et al. (2023) relate the index to 

global policy recommendations within the framework of 

the "SDG Stimulus", while many empirical studies use 

SDG scores in conjunction with governance indicators, 

income inequality, or environmental indicators to 

examine the determinants of countries' sustainable 

development performance (Sachs et al. 2023; Blancas et 

al. 2025). The WGI analyzes the relationship between 

governance indicators and SDG performance and the 

impact of governance quality on SDG achievement 

(Bisogno et al. 2025). In various studies of the SDSN, 

the SDG Index is used as a core indicator for 

comparatively evaluating country sustainability 

performance. Dvulit et al. (2025) examine the interaction 

between SDG 3 and SDG 10 by combining SDG 

indicators with the Gini coefficient; It clusters countries 

according to both their level of SDG achievement and 

their level of inequality. 

HDI – Human 

Development 

Index 

The HDI is a composite index that 

summarizes average achievement in three 

key dimensions of human development: a 

long and healthy life, education, and a decent 

standard of living. It is calculated on a scale 

of 0-1 based on the geometric mean of life 

expectancy, education (expected and mean 

years of schooling), and GDP per capita 

(GNI, PPP) (UNDP, 2024). 

The HDI is one of the most widely used composite 

indicators in discussions of human development, 

inequalities, poverty, and sustainable development. The 

UNDP Human Development Report 2023/24 interprets 

the HDI as a key indicator of global inequalities and 

development bottlenecks, referred to as "gridlocks" 

(UNDP 2024a). Many empirical studies examine the 

relationships between human development and 

environmental and economic sustainability by using the 

HDI together with indicators such as CO₂ emissions, 

renewable energy use or institutional quality. Castells-

Quintana and López-Bazo (2019). Analyze the 

relationship between income inequality and human 

development using HDI data. Liu et al. (2023) examine 

the interaction between infrastructure development, 

carbon emissions and HDI with panel data. Kozal 

(2024). Analyze environmental sustainability indicators 

using CO₂, renewable energy and HDI together. Pal et al. 

(2025) include the HDI among the determinants of 

climate change, finding that economic growth and 

industrialization, as well as human development, have a 

complex relationship with carbon emissions, and that 

renewable energy and human development can 

contribute to a more sustainable emission pathway in the 

long run. Nguyen et al. (2025) also use socioeconomic 

variables such as the HDI and structural indicators as 
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control variables in their model explaining CO₂ emission 

intensity. 

WGI – Rule of 

Law Index 

The "Rule of Law (RL.EST)" indicator, part 

of the World Bank's Worldwide Governance 

Indicators (WGI), is a composite governance 

index that measures public perceptions of 

trust in and compliance with rules across 

dimensions such as contract enforcement, 

property rights, police and judicial quality, 

and the risk of crime and violence. The 

indicator ranges from approximately −2.5 to 

+2.5 (Kaufmann et al. 2010; World Bank 

2024d). 

The rule of law indicator within the WGI is widely used 

in the sustainable development and institutional 

economics literature to measure the quality of 

governance and the strength of democratic institutions. 

Kaufmann et al. (2010) provide a detailed explanation of 

the WGI methodology, and many subsequent studies 

have linked rule of law scores to SDG performance, 

environmental policy effectiveness, or economic growth 

(Kaufmann et al. 2010; World Bank 2024d). Bisogno et 

al. (2025) examine the relationship between WGI 

indicators and SDG performance, testing the impact of 

the rule of law and other governance dimensions on 

sustainable development. Mahmutović and Alhamoudi 

(2024) examine the relationship between the rule of law 

and sustainable development within a conceptual and 

normative framework, arguing that rule of law 

institutions are fundamental to the achievement of the 

2030 Agenda and the SDGs. 

 

When the studies summarized in the table are considered as a whole, it is evident that the literature 

constructs the sustainability profiles of countries mostly based on fragmented indicators. Studies 

focusing on CO₂ emissions, API, and environmental performance (Akpolat 2024; Shabani 2024; Pal et 

al. 2025; Nguyen et al. 2025; Wendling et al. 2022; Guijarro and Poyatos 2019; Ekinci and Oturakçı 

2025) focus primarily on environmental pressure and energy transition, while the inequality and human 

development literature (Makhlouf 2023; Bi 2020; Castells-Quintana and López-Bazo 2019) deepens the 

social dimension through the Gini and HDI, while often leaving environmental and institutional 

indicators in the background.  

Although SDG and governance-based analyses (Sachs et al. 2023; UN DESA 2023; Bisogno et al. 

2025; Dvulit et al. 2025) link sustainable development achievement and WGI-based institutional quality, 

these studies generally use ready-made composite indices (SDG Index, WGI) directly and focus on two- 

to three-dimensional relationships rather than establishing a detailed set of criteria including CO₂, EPI, 

inequality and human development. A newer vein, the ESG-based sustainability uncertainty literature 

(Ongan et al. 2025; Nyakurukwa et al. 2025; Gaies 2025; Zeren et al. 2025), treats ESGUI either as a 

dependent variable (G7, financial instability, etc.) or as a single uncertainty indicator alongside certain 

financial/energy indicators; Studies that embed ESGUI into a multi-criteria country sustainability 

ranking, along with CO₂, Gini, API, EPI, SDG, HDI and WGI, remain extremely limited. 

This study offers a complementary and distinctive aspect to this literature on two levels. First, it 

combines sustainability uncertainty (ESGUI/SUI), per capita CO₂ emissions, income inequality (Gini), 

API, EPI, SDG, HDI, and WGI indicators into a single, consistent set of criteria to assess countries' 

sustainability performance within a multidimensional framework encompassing environmental, social, 

institutional, and uncertainty dimensions. Second, unlike previous studies, where composite indices such 

as the SDG Index or EPI are mostly based on normative or expert-based weighting approaches (Pinar 

2022; Sachs et al. 2023), this research determines the criteria weights using CRITIC, an objective 

method based on the information content of the data.  

It then ranks countries based on positive and negative deviations from the mean solution using the 

EDAS method. Thus, indicators generally used in regression or wavelet/measurement models in the 

literature, especially ESGUI, are positioned here for the first time as components of an objectively 

weighted multi-criteria sustainability index; countries are evaluated within a transparent and comparable 

MCDM framework, taking into account both the level of sustainability and sustainability uncertainty, 

and in this respect, the study offers an original contribution that distinguishes it from the existing 

literature. 
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3. Methodology 

 

To assess the sustainability performance of countries, an analysis was conducted using Multi-Criteria 

Decision Making Techniques (MCDM) using data from 2023. The year 2023 was chosen because the 

most up-to-date data regarding these countries is concentrated in that year. In this study, the CRITIC and 

EDAS techniques from MCDM were used in two stages. In the first stage, the criteria were weighted 

using the CRITIC method. In the second stage, the alternatives were evaluated using the EDAS method. 

Furthermore, the criteria used in the study, their sources, the direction of preference in the normalization 

process, and the codes are shown in Table 2. Table 3 shows the countries and their codes used in the 

study. 

 
Table 2. Criteria used in the study  

Criteria Explanation Preference Year Source 

SUI ESG-Based Sustainability Uncertainty Index Min 2023 ESGUI† 

CO₂ CO₂ Emissions per Capita Min 2023 Dünya Bankası 

GINI Poverty and Equality Index Min 2021-2023‡ Dünya Bankası 

API Renewable Energy Consumption Max 2021§ Dünya Bankası 

EPI Environmental Performance Index Max 2024** Yale University 

SDG Sustainable Development Score Max 2023 SDSN†† 

HDI Human Development Index Max 2023 UNDP‡‡ 

WGI Rule of Law Index Max 2023 Dünya Bankası 

 
Table 3. List of countries in the study 

Countries Code Countries Code Countries Code Countries Code Countries Code 

Australia A1 China A6 India A11 Netherlands A16 Spain A21 

Belgium A2 Colombia A7 Ireland A12 Pakistan A17 Sweden A22 

Brazil A3 France A8 Italy A13 Russia A18 UK A23 

Canada A4 Germany A9 Japan A14 Singapore A19 US A24 

Chile A5 Greece A10 Mexico A15 S Korea A20 Vietnam A25 

 

3.1. Selection of weighting method 

 

In this study, to determine the most appropriate weighting method that will accurately reflect the 

importance of critical variables such as sustainability uncertainty (SUI) and environmental pressure 

(CO₂) within the dataset, which form the main axis of the study, and ensure the consistency of the 

analysis results; the weight coefficients produced by the Entropy, MEREC, LOPCOW, and CRITIC 

methods, which are widely used in the literature, were comparatively evaluated. The comparison of the 

weighting methods related to these methods is presented in Table 4. 

The Entropy method focused on the irregularity in the distribution of data but assigned a negligible 

weight (0.005) to the SUI (Uncertainty) criterion, which is the most critical variable in the study. This 

situation demonstrates that the Entropy method is insufficient in reflecting the emphasis on uncertainty 

in this dataset. 

The MEREC method has assigned a disproportionately high weight (0.285) to the WGI criterion. 

The dominance of a social indicator in this analysis has overshadowed environmental and uncertainty 

factors. 

                                                           
† https://www.policyuncertainty.com/sustainability_index.html   
‡ It was determined based on data shared by countries in recent years (2021-2023). 
§ The latest data was shared in 2021. 
** The year 2024 was chosen because it is published biennially. 
†† Sustainable Development Solutions Network  
‡‡ United Nations Development Program 

https://www.policyuncertainty.com/sustainability_index.html
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The LOPCOW method, on the other hand, has shifted the weight significantly towards general 

development indicators such as HDI (0.172) and SDG (0.169). These risks transforming the analysis 

into a "Classic Development Ranking". 

The CRITIC method is the only method that assigns the highest weights to the SUI (Uncertainty) 

criterion (0.166) and CO₂ Emissions (0.168), which are the main themes of the study. CRITIC balances 

the weight of repetitive information by considering the correlation between data (such as the SDG-HDI-

WGI relationship) and highlights the SUI criterion, which carries more unique information. 

To preserve the decisiveness of the "Uncertainty Index" concept emphasized in the study's title and 

to ensure environmental/social balance most rationally, using the CRITIC weighting method would be 

the most appropriate choice. 

 
Table 4. Comparison of weighting methods 

Criteria Code CRITIC MEREC LOPCOW Entropi 

ESG-Based Sustainability Uncertainty Index SUI 0.166 (2) 0.089 (7) 0.094 (7) 0.005 (8) 

CO₂ Emissions per Capita CO₂ 0.168 (1) 0.106 (3) 0.113 (6) 0.145 (4) 

Poverty and Equality Index GINI 0.119 (5) 0.091 (6) 0.144 (3) 0.126 (6) 

Renewable Energy Consumption API 0.132 (3) 0.153 (2) 0.073 (8) 0.176 (1) 

Environmental Performance Index EPI 0.110 (6) 0.099 (4) 0.119 (4) 0.132 (5) 

Sustainable Development Score SDG 0.078 (8) 0.086 (8) 0.169 (2) 0.127 (7) 

Human Development Index HDI 0.100 (7) 0.091 (5) 0.172 (1) 0.127 (6) 

Rule of Law Index WGI 0.128 (4) 0.285 (1) 0.116 (5) 0.163 (2) 

Total  1.000 1.000 1.000 1.000 

 

3.2. Selection of ranking method 

 

In this study, the EDAS (Evaluation Based on Distance from Average Solution) method was 

employed for ranking countries based on their sustainability uncertainty and ESG performance 

(Keshavarz Ghorabaee et al. 2015). Methods such as TOPSIS and VIKOR, frequently used in the 

MCDM literature, evaluate alternatives based on their distance from the ''Ideal'' and ''Anti-Ideal'' 

endpoints. However, the SUI and CO₂ Emission data, which are the focus of this study, have the potential 

to contain high variation and outliers between countries. Methods based on the ideal point can be overly 

influenced by these outliers, causing ranking deviations. In contrast, the EDAS method performs the 

evaluation based on the "Average Solution" rather than outliers. This algorithm, which calculates the 

positive (PDA) and negative (NDA) deviations of alternatives from the average, mitigates excessive 

fluctuations in the dataset and provides a more robust and consistent ranking in an uncertain 

environment. Furthermore, preliminary analyses have determined that the EDAS method provides the 

highest correlation with other ranking techniques (see Table 5), statistically validating the method's 

validity. Table 6 presents a comparative evaluation of the applied MCDM techniques, highlighting the 

ranking results for each country. 

 
Table 5. Correlation results 

  ARAS WASPAS AROMAN MABAC Multimoora EDAS Cradis Average 

ARAS 1 0,552 0,697 0,684 0,681 0,853 0,328 0,816 

WASPAS 0,552 1 0,493 0,504 0,484 0,602 0,320 0,676 

AROMAN 0,697 0,493 1 0,97 0,714 0,857 0,508 0,899 

MABAC 0,684 0,504 0,97 1 0,776 0,868 0,604 0,928 

Multimoora 0,681 0,484 0,714 0,776 1 0,771 0,704 0,873 

EDAS 0,853 0,602 0,857 0,868 0,771 1 0,504 0,933 

Cradis 0,328 0,320 0,508 0,604 0,704 0,504 1 0,663 
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Despite the methodological differences between TOPSIS, which is based on the ideal solution, and 

VIKOR, which is based on the compromise solution, the fact that the EDAS method achieves high 

compatibility with both approaches demonstrates that the method's ''Average Solution'' approach 

provides the best ''Consensus'' for this data set. The EDAS method not only produced results consistent 

with other methods but also provided the most balanced ranking by preventing extreme values derived 

from SUI (Uncertainty) data from manipulating the ranking. 

 
Table 6. Comparison between methods 

Country Code ARAS WASPAS AROMAN MABAC Multimoora EDAS CRADIS Average 

Australia A1 10 6 14 13 12 12 18 11 

Belgium A2 12 5 7 6 10 8 10 7 

Brazil A3 14 21 12 14 22 14 23 18 

Canada A4 8 17 16 15 3 11 19 13 

Chile A5 18 10 19 20 8 15 2 14 

China A6 23 22 23 22 17 23 12 21 

Colombia A7 21 14 22 23 23 21 22 23 

France A8 7 24 6 5 4 6 1 6 

Germany A9 3 3 3 3 2 4 11 3 

Greece A10 20 12 11 10 11 19 5 12 

India A11 9 9 5 12 15 10 21 10 

Ireland A12 6 4 8 7 4 5 9 4 

Italy A13 19 20 9 9 12 18 6 15 

Japan A14 11 7 10 8 14 7 13 8 

Mexico A15 24 15 21 21 24 24 24 24 

Netherlands A16 2 18 4 4 6 3 8 5 

Pakistan A17 5 13 24 25 21 22 20 20 

Russia A18 25 23 25 24 25 25 15 25 

Singapore A19 13 11 18 18 18 9 14 16 

S Korea A20 17 16 17 16 18 16 16 17 

Spain A21 15 8 13 11 6 13 7 9 

Sweden A22 1 1 1 1 1 1 4 1 

UK A23 4 2 2 2 9 2 3 2 

US A24 16 19 20 19 16 17 17 19 

Vietnam A25 22 25 15 17 20 20 25 22 

 

3.3. CRITIC and EDAS multi-criteria decision-making methods 

 

In the MCDM literature, the CRITIC (Criteria Importance Through Intercriteria Correlation) method is 

an objective weighting approach that determines criterion weights entirely based on data. The method 

first calculates the standard deviation value through the normalized decision matrix to measure the 

discriminative power of each criterion, then evaluates the information overlap between criteria using 

Pearson correlation coefficients. Thus, criteria that are both highly variable (strongly distinguishing 

decision alternatives) and highly unrelated to other criteria are considered to have higher information 

content and, accordingly, receive higher weights. Due to these characteristics, the CRITIC method 

reduces decision-maker subjectivity by allowing the data structure to determine the importance of 

criteria and is widely used in the literature, particularly for multidimensional problems such as financial 

performance, sustainability, and supplier selection (Diakoulaki et al. 1995; Zardari et al. 2015; 

Keshavarz Ghorabaee et al. 2015). Table 7 details the solution steps of the CRITIC method. 
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Table 7. CRITIC method solution steps 

No Equation Explanation 

(1) 

𝑟𝑖𝑗 =  
𝑥𝑖𝑗 − 𝑥𝑗

𝑚𝑖𝑛

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛
 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 

𝑟𝑖𝑗 =  
𝑥𝑗

𝑚𝑎𝑥−𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥−𝑥𝑗

𝑚𝑖𝑛 Cost 

The decision matrix is normalized according to the 

benefit/cost characteristics. 

(2) 

𝑟𝑗=
1

𝑚
∑ 𝑟𝑖𝑗

𝑚
𝑖=1                         

𝑄𝑗 = √
1

𝑚
∑ (𝑟𝑖𝑗−𝑟𝑗)2𝑚

𝑖=1        

Using the normalized decision matrix, the mean and standard 

deviation of each criterion are calculated. The standard 

deviation indicates the criterion's discrimination. 

(3) 𝑝𝑗𝑘 =
∑ (𝑟𝑖𝑗−𝑟𝑗).(𝑟𝑖𝑘−𝑟𝑘)𝑚

𝑖=1

√∑ (𝑟𝑖𝑗−𝑟𝑗)2𝑚
𝑖=1 .√∑ (𝑟𝑖𝑘−𝑟𝑘)2𝑚

𝑖=1

  
The linear relationship between the criteria is measured by the 

Pearson correlation coefficient. This determines the extent to 

which a criterion conveys similar information to other criteria. 

(4) 𝐶𝑗 = 𝜎𝑗. ∑(1 − 𝑝𝑗𝑘)

𝑛

𝑘=1

 

The total amount of information carried by each criterion (𝐶𝑗) 

is calculated by combining the criterion's standard deviation 

with its uncorrelatedness (1 − 𝑝𝑗𝑘). 

(5) 𝑤𝑗 =  
𝐶𝑗

∑ 𝐶𝑗
𝑛
𝑗=1

 

The CRITIC criterion weights are obtained by normalizing the 

information content of each criterion. The total weight is equal 

to 1. 

 
Table 8. EDAS method solution steps 

No Equation Explanation 

(6) 𝐴𝑉𝑗 =
∑ 𝑋𝑖𝑗

𝑛
𝑖=1

𝑚
 

 

Calculating the Average Solution 

(7) 
PDAij = 

𝑚𝑎𝑥( 0,(𝑋𝑖𝑗− 𝐴𝑉𝑗))

𝐴𝑉𝑗
;  

PDAij = 
𝑚𝑎𝑥( 0,(𝐴𝑉𝑗− 𝑋𝑖𝑗))

𝐴𝑉𝑗
 

Calculating the Positive Distance Matrix from the Average 

Solution 

(8) 
NDAij = 

𝑚𝑎𝑥( 0,(𝐴𝑉𝑗− 𝑋𝑖𝑗))

𝐴𝑉𝑗
; NDAij = 

𝑚𝑎𝑥( 0,(𝑋𝑖𝑗− 𝐴𝑉𝑗))

𝐴𝑉𝑗
 

Calculating the Negative Distance Matrix from the Average 

Solution 

(9) SPi = ∑ 𝑤𝑗 ∗  𝑃𝐷𝐴𝑖𝑗
𝑚
𝑗=1  Calculating the Sum of Positive Distances 

(10) SNi = ∑ 𝑤𝑗 ∗  𝑁𝐷𝐴𝑖𝑗
𝑚
𝑗=1  Calculating the Sum of Negative Distances 

(11) NSPi  = 
𝑆𝑃𝑖

𝑚𝑎𝑥 (𝑆𝑃𝑖)
 Normalized Sum of Positive Distances 

(12) NSNi  = 1-  
𝑆𝑁𝑖

𝑚𝑎𝑥 (𝑆𝑁𝑖)
 Normalized Sum of Negative Distances 

(13) ASi = 
1

2
 (𝑁𝑆𝑃𝑖 +  𝑁𝑆𝑁𝑖) Calculating the Final Value 

 

The EDAS (Distance-Based Evaluation from the Average Solution) method, proposed by Keshavarz 

Ghorabaee et al. (2016), is a relatively new and robust methodology for solving MCDM problems. The 

basic philosophy of the method is that the attractiveness of an alternative is determined by its 

performance across all criteria and its distance from the average solution. EDAS calculates the Positive 

Distance and Negative Distance matrices of the other options relative to the average solution. For benefit 

criteria, a value above the average creates a positive distance, while for cost criteria, a value below the 

average creates a positive distance. These two distances are summed and normalized using the criteria 

weights. Finally, the final evaluation score obtained by combining the normalized positive and negative 

distances is used to rank the alternatives. This method is a simple and computationally efficient tool that 

has proven particularly effective in highly competitive evaluation scenarios where deviations from the 
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criteria's average are significant (Keshavarz Ghorabaee et al. 2016a). Table 8 details the solution steps 

of the EDAS method. 

EDAS is recommended as an alternative approach to classical methods such as TOPSIS and VIKOR 

in both theoretical and applied studies because it does not require the determination of ideal and anti-

ideal solutions, captures relative performance compared to the average, and can be adapted to different 

extensions (fuzzy, intuitionistic fuzzy, pictorial fuzzy, etc.) (Keshavarz Ghorabaee et al. 2015; Yalçın 

and Uncu 2019; Torkayesh et al. 2023). 

 

4. Results 

 

All CRITIC and EDAS stages for each country are tabulated. The full analysis processes for other 

MCDM methods (MABAC, ARAS, WASPAS, AROMAN, etc.) are not provided. Relevant tables are 

available upon request. In the first stage, the criteria are weighted using the CRITIC method. The initial 

decision matrix, created before the weighting process, is presented in Table 9. 

 
Table 9. Decision matrix 

Code/Criteria SUI CO₂ Gini  API EPI SDG HDI WGI 

A1 28,59 14,5 33,8 12,3 63,1 77,6 0,958 2,713 

A2 36,79 7,2 26,8 11,7 66,8 80,5 0,951 2,485 

A3 21,39 2,3 51,6 46,5 53 73,7 0,786 0,881 

A4 42,69 13,9 31,1 23,8 61,1 79,3 0,939 2,663 

A5 46,57 3,9 43 24,2 49,6 78,2 0,878 1,815 

A6 31,85 8,6 36 15,2 35,4 74,2 0,797 1,15 

A7 37,79 1,7 53,9 29,7 49,7 70,3 0,788 0,732 

A8 36,19 4,1 31,8 16,2 67 83,2 0,92 2,371 

A9 33,89 7 32,4 17,6 74,5 83,6 0,959 2,741 

A10 33,76 5,1 33,4 21,5 67,3 79,2 0,908 1,403 

A11 21,76 2,1 25,5 34,9 27,6 66,7 0,685 1,378 

A12 43,98 6,5 29 12,7 65,8 78,7 0,949 2,824 

A13 31,36 5,2 34,3 17,5 60,3 80,2 0,915 1,58 

A14 38,06 7,9 32,3 8,8 61,4 80,2 0,925 2,726 

A15 22,11 3,5 43,5 13 44,2 70,8 0,789 0,384 

A16 36,59 6,5 25,7 12,2 66,9 80 0,955 2,833 

A17 40,49 0,8 29,6 41,6 25,5 56,9 0,544 0,33 

A18 17,00 11,9 33 3,5 46,7 74,1 0,832 0,002 

A19 36,41 8,8 43,5 1,1 53 70 0,946 2,943 

A20 32,64 11,4 32,9 3,6 50,6 78,1 0,937 2,439 

A21 43,09 4,5 33,4 19 64 80,8 0,918 2,013 

A22 38,98 3,5 29,3 57,9 70,3 86,1 0,959 2,794 

A23 28,67 4,5 32,4 12,2 72,6 81,8 0,946 2,588 

A24 32,13 14,3 41,8 10,9 57,2 75,1 0,938 2,518 

A25 21,61 3,5 36,1 24,2 24,6 73,1 0,766 1,105 

Max 46,57 14,50 53,90 57,90 74,50 86,10 0,96 1,75 

Min 17,00 0,80 25,50 1,10 24,60 56,90 0,54 0,00 

 

Table 9 presents the raw dataset on countries' sustainability performance, showing each country's 

absolute position on indicators such as sustainability uncertainty (SUI), CO₂ emissions per capita, 

income inequality (Gini), renewable energy use (API), environmental performance (EPI), SDG, human 

development level (HDI), and rule of law (WGI). The table presents a multidimensional sustainability 
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profile that combines both cost (SUI, CO₂, Gini) and benefit (API, EPI, SDG, HDI, WGI) indicators 

within a single framework, highlighting significant differences across countries based on environmental, 

social, and governance factors.  
In Table 10, the raw indicators in the decision matrix have been normalized to account for cost-

benefit considerations, making variables with different scales and units comparable. Moving the criteria 

to a range of 0 to 1 after normalization provides a clearer picture of relative positions across countries; 

while there is particularly high variation in the WGI, EPI, SDG, and Gini indicators, the distribution is 

relatively more balanced for some criteria. This step provides the necessary statistical basis for 

calculating criteria weights based on their information content using the CRITIC method. 

 
Table 10. CRITIC normalized decision matrix 

Code/Criteria SUI CO₂ Gini  API EPI SDG HDI WGI 

A1 0,61 0,00 0,71 0,20 0,77 0,71 1,00 1,55 

A2 0,33 0,53 0,95 0,19 0,85 0,81 0,98 1,42 

A3 0,85 0,89 0,08 0,80 0,57 0,58 0,58 0,50 

A4 0,13 0,04 0,80 0,40 0,73 0,77 0,95 1,52 

A5 0,00 0,77 0,38 0,41 0,50 0,73 0,80 1,04 

A6 0,50 0,43 0,63 0,25 0,22 0,59 0,61 0,66 

A7 0,30 0,93 0,00 0,50 0,50 0,46 0,59 0,42 

A8 0,35 0,76 0,78 0,27 0,85 0,90 0,91 1,35 

A9 0,43 0,55 0,76 0,29 1,00 0,91 1,00 1,56 

A10 0,43 0,69 0,72 0,36 0,86 0,76 0,88 0,80 

A11 0,84 0,91 1,00 0,60 0,06 0,34 0,34 0,79 

A12 0,09 0,58 0,88 0,20 0,83 0,75 0,98 1,61 

A13 0,51 0,68 0,69 0,29 0,72 0,80 0,89 0,90 

A14 0,29 0,48 0,76 0,14 0,74 0,80 0,92 1,56 

A15 0,83 0,80 0,37 0,21 0,39 0,48 0,59 0,22 

A16 0,34 0,58 0,99 0,20 0,85 0,79 0,99 1,62 

A17 0,21 1,00 0,86 0,71 0,02 0,00 0,00 0,19 

A18 1,00 0,19 0,74 0,04 0,44 0,59 0,69 0,00 

A19 0,34 0,42 0,37 0,00 0,57 0,45 0,97 1,68 

A20 0,47 0,23 0,74 0,04 0,52 0,73 0,95 1,39 

A21 0,12 0,73 0,72 0,32 0,79 0,82 0,90 1,15 

A22 0,26 0,80 0,87 1,00 0,92 1,00 1,00 1,59 

A23 0,61 0,73 0,76 0,20 0,96 0,85 0,97 1,48 

A24 0,49 0,01 0,43 0,17 0,65 0,62 0,95 1,44 

A25 0,84 0,80 0,63 0,41 0,00 0,55 0,53 0,63 

 
Table 11. Bileteral correlation matrix 

  SUI CO₂ Gini  API EPI SDG HDI WGI 

SUI 1,00 -0,02 -0,15 -0,06 -0,38 -0,26 -0,31 -0,50 

CO₂ -0,02 1,00 -0,14 0,59 -0,25 -0,25 -0,53 -0,40 

Gini  -0,15 -0,14 1,00 -0,09 0,18 0,26 0,16 0,37 

API -0,06 0,59 -0,09 1,00 -0,20 -0,17 -0,45 -0,26 

EPI -0,38 -0,25 0,18 -0,20 1,00 0,83 0,86 0,69 

SDG -0,26 -0,25 0,26 -0,17 0,83 1,00 0,87 0,64 

HDI -0,31 -0,53 0,16 -0,45 0,86 0,87 1,00 0,80 

WGI -0,50 -0,40 0,37 -0,26 0,69 0,64 0,80 1,00 
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Table 11 illustrates the linear relationships between the criteria, which form the basis of the CRITIC 

method. An examination of the table reveals high positive correlations (above 0.80), particularly among 

EPI, SDG, and HDI; this indicates that these indicators convey similar information and create 

informational redundancy. Conversely, the fact that the SUI criterion—the focal point of this study—

exhibits negative correlations with most other criteria (especially WGI and EPI) demonstrates that this 

criterion introduces distinct and discriminative information to the dataset. 

 
Table 12. Critic weighting results 

  SUI CO₂ Gini  API EPI SDG HDI WGI 

𝑸𝒋  0,26697 0,29381 0,25845 0,24054 0,29138 0,21456 0,24987 0,52857 

𝑪𝒋 2,31751 2,34822 1,65487 1,83805 1,53281 1,08775 1,39901 2,99383 

𝒘𝒋 0,15275 0,15477 0,10907 0,12115 0,10103 0,07169 0,09221 0,19733 

Rank 2 1 5 3 6 8 7 4 

 

Table 12 summarizes the stage where criterion importance levels (weights) are objectively 

determined by considering the standard deviation and correlation structure of the data. The results 

indicate that criteria such as WGI (0.197) and CO₂ (0.154) received the highest weights due to their high 

variation and discriminative power within the dataset.  

The substantial weight assigned to the SUI criterion (0.152) further indicates that the uncertainty 

factor plays a critical role in differentiating countries' sustainability performances, confirming that the 

CRITIC method successfully captures this "conflicting" information. 

 
Table 13. EDAS positive distance values from the mean 

Code/Criteria SUI CO₂ Gini  API EPI SDG HDI WGI 

A1 0,143 0,000 0,035 0,000 0,145 0,014 0,094 0,431 

A2 0,000 0,000 0,235 0,000 0,212 0,052 0,086 0,310 

A3 0,359 0,648 0,000 1,364 0,000 0,000 0,000 0,000 

A4 0,000 0,000 0,113 0,210 0,108 0,037 0,073 0,404 

A5 0,000 0,403 0,000 0,230 0,000 0,022 0,003 0,000 

A6 0,046 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

A7 0,000 0,740 0,000 0,510 0,000 0,000 0,000 0,000 

A8 0,000 0,372 0,093 0,000 0,215 0,088 0,051 0,250 

A9 0,000 0,000 0,075 0,000 0,351 0,093 0,095 0,445 

A10 0,000 0,219 0,047 0,093 0,221 0,035 0,037 0,000 

A11 0,348 0,678 0,272 0,774 0,000 0,000 0,000 0,000 

A12 0,000 0,004 0,172 0,000 0,194 0,029 0,084 0,489 

A13 0,060 0,203 0,021 0,000 0,094 0,048 0,045 0,000 

A14 0,000 0,000 0,078 0,000 0,114 0,048 0,057 0,437 

A15 0,337 0,464 0,000 0,000 0,000 0,000 0,000 0,000 

A16 0,000 0,004 0,267 0,000 0,214 0,046 0,091 0,494 

A17 0,000 0,877 0,155 1,115 0,000 0,000 0,000 0,000 

A18 0,491 0,000 0,058 0,000 0,000 0,000 0,000 0,000 

A19 0,000 0,000 0,000 0,000 0,000 0,000 0,081 0,552 

A20 0,022 0,000 0,061 0,000 0,000 0,021 0,070 0,286 

A21 0,000 0,311 0,047 0,000 0,161 0,056 0,049 0,061 

A22 0,000 0,464 0,164 1,943 0,275 0,126 0,095 0,473 

A23 0,141 0,311 0,075 0,000 0,317 0,069 0,081 0,365 

A24 0,037 0,000 0,000 0,000 0,038 0,000 0,071 0,328 

A25 0,352 0,464 0,000 0,230 0,000 0,000 0,000 0,000 
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Representing the initial computational step of the EDAS method, Table 13 displays the extent to 

which countries exceed the "average performance" (or fall below it for cost criteria) on a criterion-by-

criterion basis. The high values observed for countries such as Sweden (A22) and Brazil (A3) in specific 

columns suggest that these nations derive a competitive advantage by deviating significantly positively 

from the mean in those respective areas (e.g., Brazil’s score in the renewable energy API). Conversely, 

values of zero (0.000) indicate that the relevant country fell below the average for that criterion, thereby 

failing to generate any "positive" score. 

 
Table 14. EDAS negative distance values from the mean 

Code/Criteria SUI CO₂ Gini  API EPI SDG HDI WGI 

A1 0,000 1,221 0,000 0,375 0,000 0,000 0,000 0,000 

A2 0,102 0,103 0,000 0,405 0,000 0,000 0,000 0,000 

A3 0,000 0,000 0,472 0,000 0,039 0,037 0,102 0,535 

A4 0,279 1,129 0,000 0,000 0,000 0,000 0,000 0,000 

A5 0,395 0,000 0,227 0,000 0,100 0,000 0,000 0,043 

A6 0,000 0,317 0,027 0,227 0,358 0,030 0,090 0,394 

A7 0,132 0,000 0,538 0,000 0,098 0,081 0,100 0,614 

A8 0,084 0,000 0,000 0,176 0,000 0,000 0,000 0,000 

A9 0,016 0,072 0,000 0,105 0,000 0,000 0,000 0,000 

A10 0,012 0,000 0,000 0,000 0,000 0,000 0,000 0,260 

A11 0,000 0,000 0,000 0,000 0,499 0,128 0,218 0,273 

A12 0,318 0,000 0,000 0,354 0,000 0,000 0,000 0,000 

A13 0,000 0,000 0,000 0,110 0,000 0,000 0,000 0,167 

A14 0,140 0,210 0,000 0,553 0,000 0,000 0,000 0,000 

A15 0,000 0,000 0,241 0,339 0,198 0,074 0,099 0,798 

A16 0,096 0,000 0,000 0,380 0,000 0,000 0,000 0,000 

A17 0,213 0,000 0,000 0,000 0,537 0,256 0,379 0,826 

A18 0,000 0,823 0,000 0,822 0,153 0,031 0,050 0,999 

A19 0,091 0,348 0,241 0,944 0,039 0,085 0,000 0,000 

A20 0,000 0,746 0,000 0,817 0,082 0,000 0,000 0,000 

A21 0,291 0,000 0,000 0,034 0,000 0,000 0,000 0,000 

A22 0,168 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

A23 0,000 0,000 0,000 0,380 0,000 0,000 0,000 0,000 

A24 0,000 1,191 0,193 0,446 0,000 0,018 0,000 0,000 

A25 0,000 0,000 0,030 0,000 0,554 0,044 0,125 0,417 

 

Table 14 measures instances where countries fall behind average performance, representing 

"weaknesses" in terms of sustainability. An examination of the table reveals that countries such as the 

USA (A24) and Russia (A18) exhibit high negative distance values, particularly in the CO₂ emissions 

and Sustainability Uncertainty (SUI) columns; this implies that these nations perform significantly 

worse than the average, resulting in a loss of points within the system. For instance, the value of 0.823 

in A18’s CO₂ column serves as evidence of how negatively it diverges from the mean regarding 

emissions. 
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Table 15. EDAS weighting of positive distances from the mean 

Code/Criteria SUI CO₂ Gini  API EPI SDG HDI WGI SPi N-SPi 

A1 0,022 0,000 0,004 0,000 0,015 0,001 0,009 0,085 0,135 0,291 

A2 0,000 0,000 0,026 0,000 0,021 0,004 0,008 0,061 0,120 0,259 

A3 0,055 0,100 0,000 0,165 0,000 0,000 0,000 0,000 0,320 0,690 

A4 0,000 0,000 0,012 0,025 0,011 0,003 0,007 0,080 0,138 0,297 

A5 0,000 0,062 0,000 0,028 0,000 0,002 0,000 0,000 0,092 0,198 

A6 0,007 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,007 0,015 

A7 0,000 0,114 0,000 0,062 0,000 0,000 0,000 0,000 0,176 0,380 

A8 0,000 0,058 0,010 0,000 0,022 0,006 0,005 0,049 0,150 0,323 

A9 0,000 0,000 0,008 0,000 0,036 0,007 0,009 0,088 0,147 0,317 

A10 0,000 0,034 0,005 0,011 0,022 0,003 0,003 0,000 0,078 0,169 

A11 0,053 0,105 0,030 0,094 0,000 0,000 0,000 0,000 0,282 0,607 

A12 0,000 0,001 0,019 0,000 0,020 0,002 0,008 0,097 0,145 0,313 

A13 0,009 0,031 0,002 0,000 0,009 0,003 0,004 0,000 0,060 0,130 

A14 0,000 0,000 0,009 0,000 0,011 0,003 0,005 0,086 0,115 0,248 

A15 0,052 0,072 0,000 0,000 0,000 0,000 0,000 0,000 0,123 0,266 

A16 0,000 0,001 0,029 0,000 0,022 0,003 0,008 0,097 0,160 0,346 

A17 0,000 0,136 0,017 0,135 0,000 0,000 0,000 0,000 0,288 0,620 

A18 0,075 0,000 0,006 0,000 0,000 0,000 0,000 0,000 0,081 0,175 

A19 0,000 0,000 0,000 0,000 0,000 0,000 0,007 0,109 0,116 0,251 

A20 0,003 0,000 0,007 0,000 0,000 0,002 0,006 0,056 0,074 0,160 

A21 0,000 0,048 0,005 0,000 0,016 0,004 0,004 0,012 0,090 0,194 

A22 0,000 0,072 0,018 0,235 0,028 0,009 0,009 0,093 0,464 1,000 

A23 0,022 0,048 0,008 0,000 0,032 0,005 0,007 0,072 0,194 0,418 

A24 0,006 0,000 0,000 0,000 0,004 0,000 0,007 0,065 0,081 0,174 

A25 0,054 0,072 0,000 0,028 0,000 0,000 0,000 0,000 0,153 0,331 

 

At this stage, the countries' positive distances (PDA) are multiplied by the CRITIC weights to 

transform them into a total "success score" (SPi). A review of the SPi column reveals that Sweden (A22) 

achieved the highest score of 0.464 and distinguished itself markedly from other countries by receiving 

a full score (1.000) in the normalized value (N-SPi). Table 15 elucidates which countries have best 

optimized their strengths (i.e., success in highly weighted criteria). 

Table 16 presents the weighted sum of countries' disadvantages (SNi), where the objective is to 

minimize this value. Russia (A18) exhibits the highest SNi value at 0.446, making it the most 

"penalized" country in terms of performance. Conversely, the notably low SNi values for countries such 

as the UK (A23) and Sweden (A22) (0.046 and 0.026, respectively) indicate that these nations possess 

very few weaknesses or that their weaknesses are concentrated in criteria with lower weights. 

Representing the final output of the entire analysis process, Table 17 presents the overall 

sustainability ranking derived from the synthesis of countries' Positive and Negative distances (ASi 

score). Sweden (A22) ranks first with a remarkably high score of 0.971, followed by the UK (A23) and 

India (A11). At the bottom of the list are Russia (A18) with 0.088 points and China (A6) with 0.279 

points; this result summarizes how high emissions and uncertainty can overshadow achievements in 

other areas, thereby diminishing overall performance. 
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Table 16. EDAS weighting of negative distances from the mean 

Code/Criteria SUI CO₂ Gini  API EPI SDG HDI WGI SNi N-SNi 

A1 0,000 0,189 0,000 0,045 0,000 0,000 0,000 0,000 0,234 0,475 

A2 0,016 0,016 0,000 0,049 0,000 0,000 0,000 0,000 0,081 0,819 

A3 0,000 0,000 0,052 0,000 0,004 0,003 0,009 0,106 0,173 0,612 

A4 0,043 0,175 0,000 0,000 0,000 0,000 0,000 0,000 0,217 0,513 

A5 0,060 0,000 0,025 0,000 0,010 0,000 0,000 0,008 0,104 0,768 

A6 0,000 0,049 0,003 0,028 0,036 0,002 0,008 0,078 0,204 0,543 

A7 0,020 0,000 0,059 0,000 0,010 0,006 0,009 0,121 0,225 0,496 

A8 0,013 0,000 0,000 0,021 0,000 0,000 0,000 0,000 0,034 0,923 

A9 0,002 0,011 0,000 0,013 0,000 0,000 0,000 0,000 0,026 0,941 

A10 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,051 0,053 0,881 

A11 0,000 0,000 0,000 0,000 0,050 0,009 0,020 0,054 0,134 0,701 

A12 0,049 0,000 0,000 0,043 0,000 0,000 0,000 0,000 0,091 0,795 

A13 0,000 0,000 0,000 0,013 0,000 0,000 0,000 0,033 0,046 0,896 

A14 0,021 0,033 0,000 0,067 0,000 0,000 0,000 0,000 0,121 0,729 

A15 0,000 0,000 0,026 0,041 0,020 0,005 0,009 0,157 0,259 0,419 

A16 0,015 0,000 0,000 0,046 0,000 0,000 0,000 0,000 0,061 0,864 

A17 0,033 0,000 0,000 0,000 0,054 0,018 0,035 0,163 0,303 0,321 

A18 0,000 0,127 0,000 0,100 0,015 0,002 0,005 0,197 0,446 0,000 

A19 0,014 0,054 0,026 0,114 0,004 0,006 0,000 0,000 0,218 0,511 

A20 0,000 0,116 0,000 0,099 0,008 0,000 0,000 0,000 0,223 0,501 

A21 0,044 0,000 0,000 0,004 0,000 0,000 0,000 0,000 0,049 0,891 

A22 0,026 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,026 0,943 

A23 0,000 0,000 0,000 0,046 0,000 0,000 0,000 0,000 0,046 0,897 

A24 0,000 0,184 0,021 0,054 0,000 0,001 0,000 0,000 0,261 0,416 

A25 0,000 0,000 0,003 0,000 0,056 0,003 0,012 0,082 0,156 0,650 

 
Table 17. EDAS final ranking 

Code Country ASi Ranking A13 Italy 0,513 12 

A1 Australia 0,383 19 A14 Japan 0,488 14 

A2 Belgium 0,539 10 A15 Mexico 0,342 21 

A3 Brazil 0,651 4 A16 Netherlands 0,605 7 

A4 Canada 0,405 18 A17 Pakistan 0,471 16 

A5 Chile 0,483 15 A18 Russia 0,088 25 

A6 China 0,279 24 A19 Singapore 0,381 20 

A7 Colombia 0,438 17 A20 S Korea 0,331 22 

A8 France 0,623 6 A21 Spain 0,543 9 

A9 Germany 0,629 5 A22 Sweden 0,971 1 

A10 Greece 0,525 11 A23 UK 0,658 2 

A11 India 0,654 3 A24 US 0,295 23 

A12 Ireland 0,554 8 A25 Vietnam 0,490 13 

 

4.1. Sensitivity analysis 

 

In this study, the Monte Carlo simulation method was applied to verify the robustness of the proposed 

EDAS model and to measure the resilience of the obtained country rankings against uncertainties in the 
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criterion weights. Unlike classical one-dimensional sensitivity analyses, this study simultaneously and 

randomly manipulated all criterion weights to explore a more comprehensive uncertainty space. The 

simulation and analysis process was performed using a computational algorithm developed in the Python 

programming language. In the algorithmic infrastructure, NumPy and Pandas libraries were used for 

multidimensional matrix operations and iterative calculations of the EDAS method. In contrast, 

Matplotlib and Seaborn libraries were used for statistical visualization (box plots, heat maps, and scatter 

diagrams) of the large data set obtained. During the analysis process, a random perturbation of ±20% 

was applied to the base weight coefficients (𝑤𝑗) determined by the CRITIC method, and 10,000 different 

scenarios were derived in accordance with a uniform distribution. 

 

  
Figure 1. Country-based ranking distribution (cumulative bar chart) 

 

The stacked bar Figure 1 presents the cumulative distribution of rankings achieved by each country 

throughout the simulation scenarios. The concentration of columns for countries like A22 and A3 on the 

left side of the graph in a single color or limited color blocks indicates high performance stability for 

these countries. However, as one moves towards the middle section (especially A12, A10, A25), the 

fragmented structure of columns with numerous different colors becomes noticeable, revealing that the 

rankings of these countries fluctuate over a wide range depending on weighting changes, thereby 

increasing ranking uncertainty. A18, located on the far right, consistently ranks low (yellow blocks), 

indicating negative stability. 

 

 
Figure 2. Heatmap of ranking probabilities 
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Heatmap presented in Figure 2 visualizes the probability of countries achieving specific ranking 

positions as a result of Monte Carlo simulation. Darker cells indicate a higher frequency (probability) 

of the country being in that position. For example, the intense dark color in the first-rank column for 

country A22 demonstrates that it maintains its top position regardless of weighting changes, and the 

results are quite robust for this country. In contrast, the color distribution of mid-ranked countries, such 

as A14 and A5, is spread over a wide area on the horizontal axis, and the colors become more faded, 

indicating that these countries' rankings are more sensitive to criterion weightings and that assigning a 

precise ranking is challenging. 

 

 
Figure 3. Performance vs. stability analysis (scatter plot) 

 

Figure 3 shows the scatter plot analyzes the relationship between countries' "average performance" 

(X-axis) and "ranking stability" (Y-axis) in strategic terms. A22, located in the ideal position in the lower 

left corner, is the most successful and reliable country in the system, as it has both the best average 

ranking and a standard deviation close to zero. A14 and A17, located at the top of the graph (above 1.50 

on the Y-axis), stand out as the countries with the highest standard deviation values despite their average 

performance, indicating that they have the most fragile (volatile) structure against weight changes. This 

graph is critical because it shows decision-makers not only who is first, but also whose position is 

"guaranteed." 

The Monte Carlo sensitivity analysis (10,000 scenarios and ±20% random variation in weights) 

applied to test the validity of the ranking obtained using the EDAS method demonstrated that the 

proposed model possesses a high level of robustness. As a result of the analysis, country A22 maintained 

its leadership across all weighting scenarios, demonstrating the undisputed best performance, while 

country A18 remained in last place with similar stability. Despite this reliable structure observed at the 

top and bottom of the ranking, it was found that the standard deviation increased in the middle ranks 

(particularly in countries such as A14 and A17) and that the ranking positions varied according to the 

criteria preferences; This situation proves that the performance of the countries concerned is dependent 

on specific criteria, but that the general ranking hierarchy (based on upper, middle, and lower groups) 

remains intact. 

 

5. Conclusion 

 

This study aims to contribute to the literature by evaluating countries' sustainability performance not 

only through established environmental, social, and governance (ESG) indicators but also by including 

the concept of "uncertainty", which directly affects the feasibility of these policies. The Sustainability 

Uncertainty Index (SUI/ESGUI) integrates the HDI and the WGI into a multidimensional framework 

that assesses sustainability not only in physical or economic terms but also in terms of human 
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development and the rule of law. HDI, and WGI. This multidimensional framework demonstrates that 

sustainability is not merely a physical or economic output but also a matter of institutional predictability. 

The findings of the CRITIC weighting method, applied based on the internal information structure of 

the data set, reveal that the Rule of Law and SUI are the criteria with the highest discriminatory power 

in distinguishing countries' performance. This statistically confirms that the elements of "institutional 

trust" and "policy stability," which are often overlooked in sustainability discussions, are in fact variables 

that are just as decisive as carbon emissions. 

When examining the performance ranking conducted using the EDAS method, Sweden (A22) stands 

out as the leader, clearly distinguishing itself from other countries due to its low uncertainty level and 

superior performance in environmental and social indicators. The fact that the United Kingdom and 

India follow Sweden demonstrates that the model's logic of "positive deviation from the average 

solution" can bend the traditional hierarchy between developed and developing countries by focusing 

on specific areas of success (such as India's low per capita emissions or renewable energy potential). In 

contrast, it is noteworthy that Russia, China, and the United States, despite being global economic 

powers, rank near the bottom of the list. In particular, Russia's highest negative distance score is a 

concrete demonstration of how high carbon emissions, deepening income inequality, and a weak legal 

system, combined with high policy uncertainty, can undermine a country's sustainability record. This 

result reveals that economic size or industrial capacity alone is not sufficient for building a sustainable 

future; instead, governance weaknesses can turn this capacity into a "punitive" factor. 

The Monte Carlo simulation applied to test the reliability of the obtained ranking has confirmed the 

structural stability of the proposed model. The sensitivity analysis conducted under ten thousand 

different scenarios showed that Sweden's leadership and Russia's last place remained unchanged despite 

random changes in weight coefficients. However, the study also revealed that the ranking positions of 

countries in the middle range (such as Japan or Chile) exhibited a more sensitive and variable structure 

in response to criterion preferences. This finding suggests that countries in the "fragile" or "transitional" 

performance group should adopt a balanced improvement policy encompassing all criteria, rather than 

focusing their sustainability strategies on a single area (such as energy alone). 

From the perspective of policymakers, the most fundamental recommendation offered by this study 

is the necessity to redefine sustainability strategies around the axis of "uncertainty management". 

Findings indicate that countries that enhance predictability in environmental regulations, avoid sudden 

policy changes, and establish the rule of law gain a competitive advantage in the green transition process. 

Therefore, "decarbonization" goals should be pursued not only as a technological infrastructure 

investment but also in tandem with improving institutional quality and ensuring social justice (as 

measured by the Gini and HDI indices). For developing countries in particular, this study demonstrates 

that minimizing institutional uncertainty, in addition to reducing emissions, is a low-cost yet high-impact 

lever for achieving top rankings in the global sustainability league. 

This study has several limitations, which also present significant opportunities for future research. 

First, the analysis was conducted with a limited set of criteria consisting of 25 selected countries and 

eight indicators (SUI, CO₂, Gini, API, EPI, SDG, HDI, and WGI), largely representative of the year 

2023. Therefore, expanding both the country coverage and the diversity of indicators would increase the 

generalizability and explanatory power of the findings. Furthermore, the study presents a cross-sectional 

and static ranking based on the CRITIC and EDAS methods; it does not directly examine 

transformations over time, structural breaks, or the effects of policy interventions. Therefore, future 

research is recommended to incorporate dynamic MCDM approaches with panel datasets covering 

longer periods, combined with econometric models focusing on causal relationships (e.g., panel 

regressions using EDAS scores as dependent or independent variables). 
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