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ARTICLE INFO ABSTRACT
Keywords: This study examines the effects of different types of digitalization on sustainable
Digitalization environmental management using quarterly data for Tiirkiye covering the period

1993-2023. Internet use, mobile subscriptions, and fixed line subscriptions are
employed as the main indicators representing digitalization, while carbon
emissions serve as the measure of environmental quality. To capture the
relationships between variables across different points of the distribution, the
Cross-Quantile Regression (CQR) method is applied, and the robustness of the
findings is further assessed using Modified Quantile Regression (MQR) and
Quantile on Quantile Kernel Regularized Least Squares (QQ-KRLS). The results
indicate that internet use negatively affects environmental quality particularly in
the lower carbon emission quantiles. However, as emission levels rise, the impact
of internet penetration weakens considerably and becomes statistically
insignificant in the higher quantiles. Mobile subscriptions are found to deteriorate
environmental quality most notably in the middle quantiles, whereas the effects at
the lower and upper quantiles remain limited. In contrast, fixed line subscriptions
generally reduce carbon emissions, with this beneficial effect becoming more
pronounced in the medium and high emission quantiles. These findings
demonstrate that the environmental effects of different digitalization types are not
homogeneous; rather, they vary depending on the emission level and display a
nonlinear structure.

Carbon emissions
Sustinable environmental
management

Tiirkiye

1. Introduction

Digitalization transforms the functioning of economic and social systems, generating
multidimensional effects on environmental sustainability. As digital technologies reshape energy use
patterns, production processes, and consumer behaviors, the role of the digital economy in
environmental quality has become increasingly central (Ullah et al. 2024; Tekbas and Islamoglu 2025).
This transformation not only accelerates information flows but also creates new opportunities for
monitoring, measuring, and managing environmental risks. The strengthening of digital infrastructures
supports the development of systems that enable more precise monitoring of carbon emissions and
energy consumption. Through big data analytics, sensor networks, and smart city technologies,
environmental indicators can be tracked in real time, enhancing environmental management capacity
(Yang et al. 2022; Ma and Wu 2022). As evidenced in digital city applications, digitalization accelerates
policy interventions by improving the flow of environmental information.
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Digitalization also enhances efficiency in production processes, contributing to the reduction of
environmental pressures. Industrial digitalization, automation, and robotics can lower carbon intensity,
particularly in energy intensive sectors (Yao et al. 2024; Jingren et al. 2025). Increasing digital inputs
in production offers the possibility of generating the same output with lower energy costs, thereby
improving carbon productivity (Tang et al. 2023).

The environmental impact of digitalization exhibits heterogeneity across sectors. While certain
components of the digital economy, such as data centers, mobile communication networks, and high-
density digital infrastructures, may increase energy demand (Zhang and Wang 2023; Du and Wang
2024), fixed line infrastructures or optimized digital processes tend to exhibit relatively lower carbon
effects (Pan et al. 2023). Thus, the environmental influence of digitalization is far from linear and varies
depending on the type of digital technology deployed. Another dimension of digital transformation
relates to improving organizational sustainability performance. The integration of digital technologies
into supply chains facilitates the monitoring of environmental impacts at every stage of production and
distribution, aiding firms in meeting carbon neutral objectives (Li et al. 2025; Chu et al. 2023). By
enhancing governance capacity, digitalization strengthens transparency and accountability mechanisms,
thereby supporting more effective environmental decision making.

Digitalization also has a transformative effect on individual behavior. The widespread use of digital
platforms fosters environmentally conscious consumption habits and increases awareness of low-carbon
choices (Zhang et al. 2020; Xie 2024). Enhanced information flow in the digital environment raises
societal awareness and encourages the adoption of sustainable lifestyles. Overall, digitalization is a
multidimensional transformation tool that contributes to environmental sustainability both directly and
indirectly. While the expansion of the digital economy holds the potential to improve environmental
performance, some components may increase energy demand and create environmental trade-offs.
Consequently, assessing the digitalization-environment nexus requires a flexible and comprehensive
framework that accounts for the type of digitalization, energy infrastructure, and country specific
conditions (Skare et al. 2024; Brenner and Hartl 2021).

The primary objective of this study is to reveal the effects of different dimensions of digitalization
on environmental quality in Tiirkiye and to empirically assess the role of digital transformation in
sustainable environmental management. The relationships between carbon emissions and the
components of digitalization, namely internet usage, mobile subscriptions, and fixed line subscriptions,
are examined within a holistic framework that considers different points of the distribution. In this
context, the study aims to make the heterogeneous and regime dependent nature of the digitalization and
environment nexus visible, at a time when most of the literature relies on linear models.

The empirical analysis employs the Cross Quantile Regression (CQR) method, which allows
measurement of how the relationship between variables changes across different emission levels. Unlike
traditional mean based approaches, CQR incorporates the full distribution of the independent variables
and reveals how relationships differ across both lower and upper quantiles. To evaluate the robustness
of the findings, Modified Quantile Regression (MQR) and Quantile on Quantile Kernel Regularized
Least Squares (QQKRLS) methods are also implemented, enabling the nonlinear structure of the
relationships to be tested within multiple econometric frameworks. The study uses quarterly data for
Tiirkiye covering the period 1993 to 2023.

The primary motivation of this study stems from the fact that the existing literature contains very few
studies that examine the effects of different dimensions of digitalization on environmental quality in the
context of Tirkiye using a quantile based perspective. The digitalization environment nexus has
predominantly been analyzed through linear and mean based approaches; however, such methods
largely overlook the reality that the environmental impacts of digitalization may vary depending on
emission levels, economic structure, and the intensity of technological usage. In contrast, the
environmental consequences of digital technologies may emerge in a nonlinear and heterogeneous
manner through channels such as energy demand, production efficiency, and the structure of
communication infrastructure. This gap is even more pronounced in the context of Tiirkiye. While
Tiirkiye has experienced a rapid digital transformation over the past three decades, it has simultaneously
faced increasing energy demand and environmental pressures. Despite this, the conditions under which
different forms of digitalization (such as internet usage, mobile communication, and fixed line
infrastructure) generate adverse or favorable effects on environmental quality have not been sufficiently
analyzed. Existing studies generally represent digitalization with a single indicator and fail to account
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for country specific structural dynamics. Aiming to fill this gap, the present study employs modern
quantile based econometric methods that examine the environmental effects of digitalization across the
entire distribution. Through the use of CQR, MQR, and QQKRLS approaches, the study enables a
detailed assessment of how the impacts of digitalization on environmental quality differ across low,
medium, and high emission levels. Unlike conventional models that focus solely on average effects,
these methods make it possible to uncover the nonlinear, regime dependent, and asymmetric nature of
the relationships.

Within this framework, the findings expected to be obtained from the study are anticipated to
demonstrate that the environmental impacts of digital infrastructure investments and communication
technologies are shaped not by a uniform and linear structure, but rather through multiple channels and
under varying conditions. This perspective allows for a more nuanced evaluation of the circumstances
under which digitalization may exert either positive or negative effects on environmental quality through
mechanisms such as energy consumption, carbon intensity, and patterns of technological use. This
approach offers an analytical framework that can contribute to the design of digital transformation
strategies that are more closely aligned with environmental sustainability objectives from a
policymaking perspective. In particular, indicators derived from quantile based analyses are expected to
reveal the levels at which digitalization has the potential to intensify or alleviate environmental pressure,
thereby providing guidance for the development of sustainable digital transformation policies that are
more targeted, flexible, and context specific.

This study is organized into seven sections. Following the introduction, the second section
summarizes the literature on the relationship between digitalization and environmental quality. The third
section presents the data set and the methodology in detail, while the fourth section reports the empirical
findings. The fifth section discusses the results, and the sixth section provides policy recommendations.
The seventh and final section outlines the limitations of the study and offers suggestions for future
research.

2. Literature review

The body of research examining the relationship between digitalization and environmental quality
has expanded rapidly in recent years at both the macroeconomic and sectoral levels. Evidence from
OECD and other developed countries demonstrates that digitalization affects environmental quality
through both direct and indirect channels. For example, Ullah et al. (2024) investigate the impact of
digitalization, technological innovation, and financial innovation on environmental quality within an N-
shaped EKC framework for OECD countries, showing that beyond certain thresholds, digitalization can
play an emission reducing role. Similarly, Yu and Liu (2024), using data for 136 countries, find that
digital transformation can align with environmental efficiency under appropriate institutional and
technological conditions. Ni et al. (2022) and Skare et al. (2024) analyze digitalization from the
perspective of ecological footprint and load capacity factors, emphasizing that natural resource use,
governance quality, and digital infrastructure jointly shape sustainable growth trajectories.

Country and region specific studies reveal that the digitalization environment relationship is context
dependent and largely nonlinear. Ma and Wu (2022) show that smart city applications in China may
improve energy efficiency, yet poorly designed digital infrastructure can also intensify environmental
pressure. Du and Wang (2024) and Yang et al. (2022) find that China’s digital economy has the potential
to reduce carbon intensity, although the magnitude of the effect varies by region and industrial structure.
Adha et al. (2023) for Taiwan and Onyeneke et al. (2024) for Africa document that ICT and renewable
energy consumption influence carbon emissions jointly, indicating that digitalization contributes to
environmental gains only when assessed together with the energy mix and climate policies.

Studies focusing on sectoral effects show that digitalization has heterogeneous environmental
implications across manufacturing, agriculture, animal husbandry, construction, and supply chains.
Tang et al. (2023), Fang et al. (2022), and Zhang et al. (2023) examine input digitalization in the
manufacturing sector, finding that digital technologies reduce carbon emission intensity through process
optimization, although the effect may remain limited in energy intensive subsectors. Zhao et al. (2023)
and He et al. (2025) highlight the potential of digital tools to lower carbon intensity in agriculture and
animal husbandry, while Niu et al. (2025) analyze the effect of digital inputs on CO2 emissions in
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China’s construction sector under the dual carbon policy framework. Li and Liao (2022) and Ma et al.
(2023) emphasize the synergistic effects of digitalization and industrialization on total factor carbon
performance, whereas Li et al. (2025) examine the role of supply chain digitalization in carbon neutral
management.

Firm level studies provide evidence that enterprise digital transformation reduces emissions and
affects micro level efficiency dynamics. Shang et al. (2023) and An and Shi (2023) show that digital
transformation decreases firm level carbon emissions, while Sun et al. (2025) analyze the interaction
between digitalization and carbon reduction technology R&D within a Stackelberg framework. Chu et
al. (2023) highlight the role of intelligent device utilization in emission reduction, and Yao et al. (2024)
demonstrate how industrial robots support net zero targets. Li et al. (2022) and Ma et al. (2023) further
document the combined influence of digitalization and industrial restructuring on carbon performance.

Another strand of literature investigates the digitalization-environment relationship in the context of
energy use, trade, and global value chains. Zhang and Wang (2023) analyze digitalization, electricity
consumption, and CO2 emissions in the manufacturing industry, while Huang and Zhang (2023) explore
how digitalization affects carbon emissions embodied in exports through global value chain positioning.
Ke et al. (2022) and Sagib et al. (2023) examine digitalization together with trade, financial
development, and renewable energy within the EKC framework, offering insights into the pollution
haven hypothesis and ecological footprint dynamics.

Studies such as Zhang et al. (2020), Pan et al. (2023), and Wang and Xu (2021) evaluate the
relationship between internet use, human capital, and individuals’ environmental perceptions, showing
that digitalization influences environmental quality not only through technical mechanisms but also via
behavioral and cognitive channels. Goethals and Ziegelmayer (2024), Xie (2024), and Brenner and Hartl
(2021) examine environmental concerns, willingness to pay for low carbon electricity, and the links
between digitalization and ecological, economic, and social sustainability.

In relation to Tiirkiye and similar economies, this literature indicates that digitalization does not have
a uniform or one directional effect on environmental quality. The magnitude and direction of the impact
vary according to country groups, sectors, types of digital infrastructure, energy composition, and
institutional frameworks. Considering evidence from OECD, Asian, African, European, and American
contexts collectively, digitalization can offer significant opportunities for reducing carbon emissions
and ecological footprints when supported by appropriate energy policies, green innovation, financial
development, and governance. Otherwise, digitalization may increase environmental pressure through
higher energy consumption and production scale. This multidimensional and context sensitive structure
highlights the importance of considering nonlinear and heterogeneous effects when modeling the
digitalization environment relationship empirically.

Although the existing literature demonstrates that the relationship between digitalization and
environmental quality varies significantly across country groups, sectors, types of digital infrastructure,
and institutional frameworks, studies that examine this relationship specifically for Tiirkiye, by
disentangling different dimensions of digitalization, and across the entire distribution remain highly
limited. In particular, most empirical studies rely on linear or mean based models when assessing the
environmental impacts of digitalization, an approach that is insufficient for capturing asymmetric,
nonlinear, and regime dependent effects that vary with emission levels.

Moreover, the literature largely overlooks comparative analyses of how different components of
digitalization, such as internet usage, mobile communication, and fixed line infrastructure, affect
environmental quality within the same country context and under a unified empirical framework. Given
Tiirkiye’s rapid digital transformation alongside increasing energy demand and environmental
pressures, there is a clear need for empirical evidence that identifies the conditions under which
digitalization exerts either mitigating or aggravating effects on environmental quality using quantile
based methodologies. In this context, the present study aims to fill an important gap in the literature by
explicitly accounting for heterogeneity and nonlinearity in the digitalization-environment nexus within
the Turkish context.
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3. Data and methodology

3.1. Data

The main purpose of this study is to comprehensively analyze the effects of different dimensions of
digitalization on environmental sustainability in Tiirkiye. In the study, digitalization is represented
through three indicators: internet usage rate (INTERNET), mobile cellular subscriptions (MOBILE),
and fixed telephone subscriptions (FIXED). These indicators reflect the multidimensional structure of
digitalization, capturing both modern and traditional communication technologies. The analysis is based
on quarterly data for the period 1993-2023 for Tiirkiye, and this long term, high frequency dataset allows
for a detailed examination of the dynamic relationship between digitalization and carbon emissions
(CO).

Tiirkiye was selected as the focus of the analysis primarily because the country has undergone rapid
transformation in both its digital infrastructure and economic structure over the past three decades.
During this period, internet penetration has increased significantly, mobile communication usage has
become widespread, and the share of the digital services sector has considerably expanded. At the same
time, Tirkiye’s energy consumption and carbon emissions have risen substantially. Therefore, the
direction and magnitude of the relationship between digitalization and environmental pressure constitute
a critical area of inquiry for Tiirkiye from both economic and policy perspectives. In this context, the
study aims to provide a current and country specific contribution to the literature by revealing whether
digitalization has an improving or worsening effect on environmental quality.

Table 1. Variable definitions and data sources

Code Variable name Measurement Source
Co CO: emissions Carbon dioxide (CO2) emissions (t CO2e/capita) WDI
INTERNET Digitalization-1 Individuals using the Internet (% of population) WDI
MOBILE Digitalization-2 Mobile cellular subscriptions (per 100 people) WDI
FIXED Digitalization-3 Fixed telephone subscriptions (per 100 people) WDI

Table 1 summarizes the variables used to examine the relationship between carbon emissions and
digitalization in the study. While the dependent variable CO: emissions represents Tiirkiye’s
environmental performance, the INTERNET, MOBILE, and FIXED variables reflect different
dimensions of digitalization. Internet usage captures the level of modern digital transformation, mobile
subscriptions indicate the widespread use of digital communication, and fixed telephone subscriptions
represent the presence of more traditional communication infrastructure. The fact that all data are
obtained from the World Bank provides a reliable and comparable dataset for the analysis. Within this
framework, the study allows for a multidimensional evaluation of the effects of digitalization on
environmental quality.

In this study, the level of digitalization is proxied by individuals using the Internet (% of population)
(INTERNET), mobile cellular subscriptions (per 100 people) (MOBILE), and fixed telephone
subscriptions (per 100 people) (FIXED), which are widely accepted and commonly used indicators in
the literature to capture digital infrastructure, access, and usage dimensions. A substantial body of
empirical research examining the environmental and sustainability impacts of digitalization
conceptualizes digitalization as a multidimensional phenomenon and employs internet usage and mobile
communication indicators as core explanatory variables. For instance, Jozwik et al. (2023) and Altay
Topcu (2025) utilize internet usage and ICT related indicators to investigate the direct and indirect
effects of digitalization on environmental quality and green growth. Similarly, Tekbas and Islamoglu
(2025) and Ullah et al. (2024) rely on internet and mobile communication indicators when assessing the
role of digitalization in sustainable environmental management and energy environment relationships.
Mobile cellular subscriptions, in particular, are frequently used as a proxy for digital inclusion and
technological diffusion, as demonstrated by Ratombo and Mongale (2024) and Ehigiamusoe et al.
(2025) in studies focusing on the economic and energy related dimensions of digitalization. Fixed
telephone subscriptions, on the other hand, reflect the structural and infrastructural foundations of
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information and communication technologies and are included within composite digitalization
frameworks in studies such as Elom et al. (2024) and Azu et al. (2024), which examine the
socioeconomic implications of communication infrastructure. Therefore, the digitalization variables
employed in this study are not arbitrarily selected but are firmly grounded in established theoretical and
empirical practices in the literature, aiming to comprehensively capture multiple dimensions of
digitalization.

3.2. Methodology

To prevent spurious regressions, the analysis first applies the Quantile Augmented Dickey-Fuller
(QADF) test, which examines stationarity across different points of the conditional distribution rather
than only at the mean. This allows the test to capture heterogeneity and potential nonlinear persistence
in the data. Model adequacy is then evaluated using the Brock-Dechert-Scheinkman (BDS, 1996) test
on the residuals. Rejecting the i.i.d. assumption indicates nonlinear dependence or omitted dynamics
that linear models cannot detect. Thus, while QADF determines the integration order of the variables,
the BDS test verifies whether the residuals satisfy independence. The BDS statistic is calculated as
follows in Equation (1), Equation (2) and Equation (3), respectively:

qeov, (Y, X) = cov {I(Y — Qy > 0),x} = E(p(Y — Qy)(X — E(X)) 1)
p:w)=1t—1(w<0) (2

_Cp(e) —ci"(e)
Wn(e) = P 3)

Sim and Zhou’s (2015) quantile on quantile regression (QQR) models the interaction between the
quantiles of two variables, but the method is highly bandwidth dependent and often suffers from singular
matrix problems. In addition, QQR lacks a formal statistical inference framework (Adebayo et al. 2025).
To address these drawbacks, Li (2024) developed Cross Quantile Regression (CQR), which constructs
quantile series for both the dependent and independent variables and then estimates regressions across
all quantile combinations. The general structure of CQR is presented in Equation (4).

Q(Y) = %(7,0) + Y1(7,6) Qo(X) + (7, 0) (4)

CQR improves upon standard quantile regression by modelling how different quantiles of the
explanatory variable influence the full distribution of the dependent variable. This approach uncovers
tail interactions and asymmetric dependence patterns that conventional methods cannot reveal, showing
how shocks at specific quantiles of X propagate across multiple quantiles of Y (Adebayo et al. 2025).

As a robustness check, the study applies the Quantile on Quantile Kernel Based Regularized Least
Squares (QQKRLS) method. KRLS, originally developed by Hainmueller and Hazlett (2014), is a
flexible machine-learning estimator that avoids strict functional form assumptions. Using Gaussian
kernels, it captures nonlinear and heterogeneous effects, and evaluates the influence of X on Y through
pointwise marginal effects, summarised in Equation (5).

ﬁxk] sz P - (5)

The standard KRLS method models only the distribution of the dependent variable and evaluates
nonlinear effects using an average marginal impact, without accounting for the full distribution of the
predictor. To address this limitation, QQKRLS extends KRLS by incorporating quantiles of both the
dependent and independent variables, allowing joint estimation of effect size and significance across the
entire distribution (Adebayo et al. 2024). Thus, QQKRLS enables a more comprehensive assessment of
how X influences Y, as shown in Equation (6).
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4. Empirical results

In this part of the study, the empirical findings on the effects of different types of digitalization on
sustainable environmental management in Tiirkiye are presented. Before the main analysis, the QADF
stationarity test and the BDS nonlinearity test were applied to assess the structural properties of the
series. Following these preliminary tests, the relationships between the variables were examined using
the Cross Quantile Regression (CQR) approach, which reveals asymmetric and distribution dependent
effects. Finally, to evaluate the robustness of the results, additional analyses based on the Modified
Quantile Regression (MQR) and the Quantile on Quantile Kernel Regularized Least Squares (QQKRLS)
methods were conducted.

Table 2. Descriptive Statistics

CO INTERNET MOBILE FIXED
Mean 4.078603 34.18429 62.1185 20.86774
Median 4.215612 34.37 86.6345 215
Maximum 5.474392 85.9607 105.684 28.5
Minimum 2.725375 0.00846 0.146933 114
Std. Dev. 0.861249 29.68826 38.77622 5.822278

Table 2 presents the overall distribution of the variables used in the analysis. The relatively limited
volatility in the carbon emissions (CO) variable indicates that environmental pressure in Tiirkiye did not
exhibit major fluctuations over the examined period. In contrast, the digitalization indicators
(INTERNET, MOBILE, FIXED) show a wide range of variation, particularly in internet usage and
mobile subscriptions. This reflects the rapid pace of digital transformation in Tirkiye throughout the
study period. The substantial rise in mobile usage, along with the relatively narrow variation in fixed
line subscriptions, illustrates a shift from traditional communication infrastructure toward a more mobile
centered structure. Overall, the descriptive statistics demonstrate that Tiirkiye's dynamic digitalization
process provides an important analytical basis for assessing environmental outcomes.

CI| 2[0 4|0 GIU 8I0 190 3i0 3I5 4|0 4]5 5,]0 5I5
3 || -0.57% || 0.93**

P IR el [-0-75" [
e =" | =
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0 20 40 60 80 15 20 25

I
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Figure 1. Correlations matrix

Figure 1 presents the correlation matrix and shows clear relationships among the variables. Internet
use, mobile subscriptions, and fixed line subscriptions all display strong and statistically significant
correlations with carbon emissions. Internet and mobile usage are positively correlated with CO, while
fixed line usage shows a negative correlation. This indicates that different types of digitalization have
distinct environmental implications. Overall, the matrix demonstrates the presence of notable linear
relationships among the variables, highlighting the importance of accounting for these dependencies in
the empirical analysis.
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Table 3. BDS test results

Dimension CcOo INTERNET MOBILE FIXED

m2 0.182381" 0.181112° 0.199873" 0.151227"
m3 0.301736" 0.292013" 0.335064" 0.235111"
m4 0.378295" 0.359375" 0.427757" 0.280184"
m5 0.427638" 0.397604" 0.491870" 0.298011"
mé 0.460516" 0.410732" 0.536176" 0.304430"

Note: "p < 1%

Table 3 BDS test results show that all variables exhibit statistically significant dependence across
dimensions m2 to m6. These findings indicate that the CO, INTERNET, MOBILE and FIXED series
are not independent and identically distributed (i.i.d.), meaning they contain nonlinear structures,
complex dependencies or hidden dynamics. Therefore, linear models alone are insufficient to fully
capture the behavior of these variables, and the use of more advanced nonlinear methods is required.

CcO INTERNET

Test Statistics
Test Statistics

025 0.50 075 025 0.50 0.75
Quantiles Quantiles
MOBILE FIXED

Test Statistics
Test Statistics

025 0.50 0.75 025 0.50 075
Quantiles Quantiles

Figure 2. QADF unit root test

Figure 2 shows that the QADF unit root statistics exceed the critical threshold lines across most
quantiles. This indicates that the variables contain unit roots at the corresponding quantile levels and are
non stationary in levels. To ensure the reliability of the analysis and eliminate the risk of spurious
regression, all variables were transformed into their first differences (I1(1)) before proceeding to the next
modeling steps. In this way, advanced quantile based methods such as CQR and QQKRLS were applied
to stationary series, ensuring the validity and robustness of the empirical results.
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Figure 3 presents the Cross Quantile Regression results and shows that the relationship between
different forms of digitalization and carbon emissions varies markedly across quantile levels. The
findings for internet use indicate that the association is stronger at lower CO quantiles, suggesting that
increases in internet penetration exert a more pronounced environmental impact when emissions are
relatively low. As emission levels rise, the effect becomes weaker, implying that the marginal
environmental influence of digital activities diminishes under high emission regimes. This pattern
demonstrates that the environmental impact of internet use is nonlinear and sensitive to the prevailing
level of emissions.

The results for mobile subscriptions show that the interaction with CO is strongest in the middle
guantile ranges. This suggests that the expansion of mobile communication infrastructure may
contribute more noticeably to environmental pressure under moderate emission conditions. In contrast,
the weaker relationship observed at both lower and higher quantiles indicates that the environmental
effect of mobile usage is heterogeneous across emission regimes and cannot be captured by a simple
linear structure.

Fixed line subscriptions generally exhibit a negative association with carbon emissions. This
relationship becomes more pronounced at medium and high CO quantile levels, indicating that increases
in fixed line usage tend to reduce emissions, likely due to the relatively lower energy requirements of
fixed line infrastructure compared to mobile technologies. The weaker effects observed at lower
quantiles suggest that changes in fixed line usage have limited environmental consequences when
emissions are already low.
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Overall, the results demonstrate that the environmental impact of digitalization depends both on the
type of digital technology and on the position within the carbon emission distribution. Therefore,
assessments of digital technologies in the context of environmental sustainability must consider these
guantile dependent and asymmetric dynamics.
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Figure 4 presents a comparative assessment of the slope coefficients obtained from the Modified
Quantile Regression (MQR) and the Averaged Cross Quantile Regression (CQR) methods. For all three
digitalization indicators, the correlation between the MQR and CQR slope series ranges between 0.83
and 1, indicating that the direction and general pattern of the relationship do not change depending on
the estimation method and that the findings are highly consistent. While MQR captures sharper
transitions—especially at the extreme quantiles—revealing regime shifts and threshold points more
clearly, CQR provides a smoother representation of the same relationships and reliably reflects the
overall direction of effects.

For INTERNET, the results show that the slope coefficients with CO increase across quantiles, and
both methods capture this upward trend consistently. The strengthening effect of internet use on CO at
higher emission quantiles becomes evident, with MQR capturing sharper rises and CQR presenting a
stable upward pattern. This indicates that the environmental impact of internet usage is sensitive to
emission intensity and displays an asymmetric structure. In the case of MOBILE, the results exhibit a

107



H. Lahmeri Journal of Sustainable Digital Futures 2025 1(2) 98-114

similar pattern. The relationship with CO becomes stronger in the middle quantile ranges, with MQR
identifying sharper jumps in specific bands. This suggests that mobile communication infrastructure
generates a more pronounced environmental effect under certain emission regimes. The smoother CQR
profile confirms the positive and quantile dependent structure of this relationship. For FIXED, both
methods show a negative relationship with CO that intensifies across the quantiles. As fixed line usage
increases, its reducing effect on emissions becomes stronger at higher emission quantiles. MQR captures
sharper declines in these ranges, while CQR maintains the general downward pattern. The correlation
coefficient of 1 indicates that the findings regarding fixed line usage are highly robust.

Overall, the combined evaluation of the MQR and CQR methods clearly shows that digitalization
affects environmental outcomes in a quantile dependent and regime sensitive manner. While internet
and mobile usage increase emissions, fixed line usage reduces them, and these effects are concentrated
particularly in the upper emission quantiles. Therefore, policy design should jointly consider the general
direction provided by CQR and the threshold specific intensities identified by MQR to effectively
manage the net environmental consequences of digitalization.
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The QQKRLS results presented in Figure 5 show that the relationship between digitalization
indicators and carbon emissions varies across quantiles. The findings regarding Internet usage indicate
that positive and statistically significant coefficients dominate in most quantiles of CO. This result
supports the positive directional effect observed in the CQR analysis and shows that the relationship
remains stable across various quantile combinations. The results obtained for mobile usage also display
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positive and significant values across a wide range of quantiles. The fact that the mobile variable exhibits
stronger coefficients particularly in the middle and upper quantile regions confirms the positive
relationship identified in the CQR analysis. The QQKRLS findings demonstrate that the relationship
between mobile usage and CO remains consistently positive across different emission levels. For fixed
line usage, the coefficients are predominantly negative and significant in most quantiles. More
pronounced negative values are observed in the lower and middle quantiles of CO, indicating that the
mitigating effect seen in the CQR results is also supported by QQKRLS. The similar pattern of the fixed
line variable across quantiles demonstrates the consistency of the relationship across methods.

Overall, the QQKRLS results support the main relationship patterns obtained through CQR; Internet
and mobile indicators show a positive relationship in most quantiles, while the fixed line indicator
predominantly exhibits a negative relationship. The method’s ability to illustrate the relationship across
quantiles in detail strengthens the robustness of the findings.

5. Discussion

The main finding of this study is that different components of digitalization in Tiirkiye produce
effects in different directions on environmental quality. While internet use and mobile subscriptions
show a positive relationship with carbon emissions, fixed line usage is found to have an emission
reducing effect. These results partially align with empirical studies emphasizing that digitalization does
not automatically imply a "green" transformation and may create additional environmental pressure,
particularly through the channels of rising energy demand and electricity consumption (Zhang and Wang
2023; Du and Wang 2024). On the other hand, studies showing that smart city applications and digital
infrastructure investments can reduce carbon intensity indicate that digitalization can also have a
mitigating potential depending on its design and institutional framework (Ma and Wu 2022; Yang et al.
2022). In this respect, the findings for Tiirkiye suggest that the direction and content of digitalization
play a decisive role in shaping environmental outcomes.

The positive relationship found for internet usage should be interpreted alongside the dual sided
discussion in the literature on the environmental impacts of internet technologies. Studies examining the
global relationship between internet access and carbon emissions report that digital penetration can
increase energy consumption while also enabling cleaner choices in the long run through channels such
as human capital and environmental awareness (Wang and Xu 2021; Zhang et al. 2020). Other findings
emphasize that the environmentally friendly use of internet based systems is shaped by users’
environmental sensitivities (Goethals and Ziegelmayer 2024; Xie 2024). The fact that internet use in
this study worsens environmental quality particularly in certain quantiles indicates that Tiirkiye’s digital
infrastructure and usage patterns still operate in ways that increase energy demand, and that
environmental benefits have not yet been fully internalized. Compared with regional or city level studies
showing that internet development can sometimes be associated with emission reduction (Pan et al.
2023), this suggests that country and period specific differences matter significantly.

It is also notable that the results for mobile subscriptions differ from many enterprise level
digitalization findings in the literature. A wide range of studies at the firm or sector level report that
digital transformation can reduce emission intensity through process optimization, resource efficiency,
and the adoption of green technologies (An and Shi 2023; Shang et al. 2023; Li and Liao 2022; Fang et
al. 2022; He et al. 2025; Ma et al. 2023; Zhang et al. 2023; Yao et al. 2024; Niu et al. 2025). The positive
association between mobile usage and carbon emissions found in this study suggests that household and
consumer driven digital expansion may leave a different environmental footprint from the efficiency
gains observed at the enterprise level. The negative impact of fixed line usage on emissions, by contrast,
is consistent with findings highlighting the link between digital infrastructure and energy efficiency, but
it provides a more original and detailed contribution because most studies do not explicitly distinguish
fixed lines (Adha et al. 2023; Onyeneke et al. 2024).

The quantile based results of this study methodologically complement the existing literature, which
often focuses on average effects through panel or time series models. Studies examining the relationship
between digitalization, energy, and environmental indicators typically analyze these links within a linear
framework and report a single long run coefficient (Ullah et al. 2024; Yu and Liu 2024; Ni et al. 2022;
Skare et al. 2024). While these findings reveal significant trends, they only partially reflect how the
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effects vary depending on emission levels. In this regard, the quantile based results obtained using Cross
Quantile Regression, MQR, and QQKRLS demonstrate that the environmental effects of different types
of digitalization intensify within specific emission regimes and exhibit nonlinear structures. This
framework enables policymakers especially in countries like Tiirkiye, where the digital transformation
process is ongoing to reconsider digital infrastructure investments and regulatory frameworks through
an emission sensitive perspective that accounts for regime differences.

6. Conclusion and policy implications

This study examines the effects of different digitalization indicators on sustainable environmental
management in Tiirkiye using quarterly data for the period 1993-2023 and quantile based econometric
methods. The findings reveal that the digitalization-emissions relationship exhibits a nonlinear and
guantile specific structure. Both the CQR and QQKRLS analyses show that increases in internet and
mobile usage are associated with higher CO: emissions across most quantile ranges, whereas fixed line
usage exerts a mitigating effect particularly at low and medium emission levels. These results indicate
that the environmental outcomes of digital infrastructure differ according to the technological form and
its energy consumption profile.

The findings suggest that the expansion of digitalization without attention to energy efficiency may
increase carbon intensity. The stronger environmental pressure observed in higher emission quantiles
for internet and mobile networks underscores the need to integrate digital infrastructure with renewable
energy and to promote energy efficient network technologies. Given that rising mobile data usage
elevates energy demand, it is important to encourage operators to adopt energy efficient 5G/6G
technologies and to promote infrastructure sharing.

The negative association between fixed line usage and emissions at lower quantiles indicates that
increasing fiber penetration may serve as an environmentally compatible policy tool. By balancing
mobile data traffic and enhancing long term energy efficiency, fiber infrastructure emerges as a strategic
factor in reducing the environmental costs of digitalization. Therefore, the digital transformation process
should not rely solely on mobile centric structures; rather, a holistic approach that integrates fixed and
mobile infrastructure is required.

The findings obtained for Tiirkiye indicate that the effects of different dimensions of digitalization
on carbon emissions are not homogeneous and diverge depending on the type of digital infrastructure
used. The positive relationship between internet usage and mobile communication indicators and CO-
emissions suggests that digitalization in Tiirkiye primarily operates through consumption, service
intensity, and energy demand increasing channels. Increased internet and mobile usage raise carbon
emissions by expanding e-commerce volumes, increasing the energy demand of data centers, and
accelerating electricity and fossil fuel consumption through the widespread use of digitally driven
transportation and delivery activities. In contrast, the negative relationship between fixed line usage and
CO: emissions can be explained by the fact that this infrastructure represents a relatively mature and
more energy efficient communication technology. Compared to mobile networks, fixed line
infrastructure has lower unit energy consumption, benefits from economies of scale in data transmission,
and limits additional carbon intensive infrastructure investments. Moreover, the stronger association of
fixed line usage with institutional, established, and planned communication structures may generate
emission-reducing effects by enhancing digital efficiency and coordination in production processes.
These findings demonstrate that the environmental impacts of digitalization in Tirkiye are sensitive to
the type of technology used and highlight the need for digital transformation policies to be designed in
a way that promotes low-carbon digital infrastructures.

Overall, the results demonstrate that the environmental effects of digitalization are not homogeneous
and vary across emission regimes. Thus, policy design should be based on a framework that accounts
for quantile level heterogeneity, prioritizes energy efficiency, and differentiates technology types.
Digital infrastructure investments supported by renewable energy, stronger carbon performance
standards for digital service providers, digital carbon-monitoring systems in public institutions, and the
widespread adoption of energy efficient devices constitute essential components of a sustainable digital
transformation.
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In sum, this study is one of the few analyses to evaluate the environmental effects of digitalization
from a quantile based perspective and shows that managing the energy intensity of digital infrastructure
is critical for Tirkiye to achieve its sustainable development goals. The findings highlight the need for
digital transformation policies to integrate environmental and technological dimensions simultaneously
and provide policymakers with a quantile sensitive analytical foundation.

7. Limitations and directions for future research

This research contains certain limitations stemming from the scope of the analysis, the dataset used,
and the methodological framework. The empirical examination relies exclusively on quarterly data for
Tirkiye; therefore, the findings are shaped by the country’s unique economic structure, level of
digitalization, and energy composition. As a result, the relationships identified may not be directly
generalizable to countries with different institutional characteristics or digital transformation
trajectories. Furthermore, the digitalization indicators used in the study are limited to the core variables
available in the World Bank database, which prevents the inclusion of more detailed components of
digital infrastructure such as cloud technologies, data centers, artificial intelligence based services, or
5G networks. This constraint implies that the environmental impacts of digitalization are assessed only
through broad aggregate indicators.

Future research would benefit from expanding the analysis to include cross country comparisons,
allowing a deeper understanding of how the environmental effects of digitalization differ depending on
institutional quality, the share of renewable energy, energy efficiency policies, and economic
development levels. The use of richer datasets capturing the micro components of digitalization for
example data center energy use, the electricity demand of artificial intelligence applications, cloud
infrastructure density, or the carbon footprint of 5G and 6G networks could significantly enhance the
precision and depth of the results. Additionally, applying methodologies capable of evaluating causality
such as quantile Granger causality, nonlinear ARDL, or wavelet quantile techniques would make it
possible to examine the time varying and regime dependent structure of the digitalization environmental
relationship within a more comprehensive analytical framework.
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ABSTRACT

This study investigates the global interconnectedness between digitalization and
Environmental, Social, and Governance (ESG) performance using the Quantile-
on-Quantile (QQ) Connectedness approach. The analysis employs the S&P 500
ESG Tilted Index, MSCI World ESG Leaders Index, and STOXX Global
Digitalisation Index to evaluate the dynamic relationships between sustainability
indices and market indicators of digitalization. The findings reveal strong and
positive connectedness between digitalization and ESG indices, particularly at the
lower and upper tails of the distribution. Moreover, sustainability indices
generally act as dominant transmitters toward digital technology indices, whereas
digitalization indices occasionally influence ESG indices during specific periods.
These results indicate that sustainability-driven investment flows play a defining
role in shaping the digital sector globally. The study contributes to the literature
by providing a holistic and multidimensional assessment of the digitalization ESG
nexus and offers strategic implications for investors, policymakers, and firms.
Additionally, the findings highlight the critical importance of sustainable
technology investments and digital transformation strategies for corporate
performance.

1. Introduction

Digitalization has emerged as a key transformational force reshaping the Environmental, Social, and

Governance (ESG) performance of firms. The literature provides strong evidence that digital
technologies enhance sustainability practices at both the operational and corporate governance levels.
The use of digital tools such as big data analytics, cloud computing, artificial intelligence, and
automation enables firms to generate more accurate data, improve decision-making processes, and
establish more robust sustainability strategies (Eriandani and Winarno 2023; Fang et al. 2023). This
transformation not only optimizes processes but also improves governance quality and increases
transparency toward stakeholders.

The impact of digitalization on environmental performance is particularly pronounced, offering
significant gains in energy efficiency, emissions reduction, and optimized resource use. Artificial
intelligence, 10T, and sensor systems reduce carbon footprints across production and logistics, while
enhancing the monitoring, measurement, and reporting of environmental impacts (Zhou and Liu 2023;
Lu et al. 2024). Digitalized supply chains further strengthen traceability, resulting in improvements in
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waste management, green procurement, and environmental risk mitigation (Tian et al. 2025; Chen et al.
2024a). Accordingly, digital transformation is closely aligned with environmental sustainability
strategies. The effects of digitalization are also evident in the social and governance dimensions. In the
social domain, digital tools offer firms significant advantages in enhancing worker safety, improving
operational processes, protecting consumer rights, and safeguarding data privacy (Zhao et al. 2024;
Wang and Esperanca 2023). In governance, blockchain, automated auditing mechanisms, and digital
reporting systems strengthen corporate transparency, enhance accountability, and reduce ethical risks
(Moro-Visconti 2022; Agag et al. 2025). Thus, digitalization functions as a critical lever that enhances
social responsibility and governance quality.

Finally, the literature emphasizes that digital transformation strengthens ESG performance not only
directly but also indirectly through innovation capacity and dynamic capabilities. Digital tools enhance
firms’ ability to generate green innovation, establish sustainable supply chains, improve corporate risk
management, and create long-term value (Su et al. 2023; Zhong et al. 2023). Several studies further
show that firms with stronger ESG performance are more likely to adopt digital solutions and that the
relationship between ESG and digitalization is mutually reinforcing (Zhao et al. 2023; Cheng and Li
2025). Taken together, these findings clearly demonstrate that digitalization represents a strategic and
holistic transformation mechanism that enhances firms’ ESG performance.

The strengthening of sustainability and ESG performance through digitalization can be explained
indirectly, rather than directly, by the mechanisms proposed in Agency Theory and Dynamic
Capabilities Theory, since the ESG concept did not exist when these theories were originally developed.
Agency Theory argues that information asymmetry and monitoring problems between managers and
owners can be reduced through technological tools (Jensen and Meckling 2019; Fama and Jensen 1983).
Digital reporting, data transparency, and traceability systems enhance the monitoring of managerial
behavior in line with the theory’s predictions, thereby increasing accountability, which corresponds to
the governance dimension of today’s ESG framework.

On the other hand, Dynamic Capabilities Theory emphasizes that firms must develop agile, learning,
and innovative capacities to remain competitive (Teece et al. 1997). Digital technologies provide firms
with new capabilities in areas such as environmental efficiency, process optimization, supply chain
traceability, and stakeholder engagement, indirectly supporting sustainable performance. Therefore,
although ESG did not exist when these theories were formulated, the mechanisms they propose, such as
transparency, monitoring, innovation, and adaptive capability, offer a strong theoretical foundation for
explaining how digitalization enhances ESG performance today.

The primary objective of this study is to investigate the dynamic interdependence between
sustainability indicators and digitalization financial markets at the global level. In this context, the study
examines the connectedness structure among the S&P 500 ESG Tilted Index (SPXETUP) and the MSCI
World ESG Leaders Index (MIWOOOL2TNUS), which proxy ESG performance, and the STOXX
Global Digitalisation USD Price Index (IXDIGITK), which represents the performance of digitalization
sectors. Together, these indices offer an integrated framework for assessing the financial implications
of sustainability investment strategies alongside the evolving market dynamics of the digital economy.
To achieve this objective, the study adopts the Quantile-on-Quantile (QQ) Connectedness framework
proposed by Gabauer and Stenfors (2024), which enables the examination of dependence structures
across the entire conditional distribution rather than being restricted to average effects.

The Quantile-on-Quantile (QQ) Connectedness approach facilitates the identification of
asymmetries, regime dependent interactions, and quantile spillover dynamics between sustainability and
digitalization markets under varying market conditions. In particular, it captures how the magnitude and
direction of connectedness evolve during tranquil periods as well as during episodes of heightened
volatility and extreme market movements. By employing this advanced connectedness methodology,
the study extends the existing literature by providing a more comprehensive depiction of market
sensitivity and risk transmission mechanisms between sustainability and digital transformation
indicators. Accordingly, the analysis contributes to a deeper understanding of how sustainability
financial markets and digitalization sectors interact under different market regimes, thereby offering
valuable insights into the structural linkages that shape global financial dynamics.

Although the existing literature provides extensive evidence on the effects of digitalization on firm
level ESG performance, the interconnectedness between sustainability indicators and digitalization
market indices at the global level remains largely unexplored. Prior studies predominantly rely on micro
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level firm data, leaving the macro-financial comovement between ESG and digitalization indices, the
direction and intensity of shock transmission, and the underlying cross market dependency structure
insufficiently examined. Consequently, the interaction between sustainability financial markets and
digitalization market segments has not yet been systematically analyzed within a unified empirical
framework.

In this context, the present study contributes to the literature by providing the first empirical
investigation of the dynamic connectedness between global ESG market indices (SPXETUP and
MIWOOOL2TNUS) and a digitalization market index (IXDIGITK). Beyond its empirical scope, the
study also advances the methodological frontier by employing the Quantile-on-Quantile (QQ)
Connectedness approach proposed by Gabauer and Stenfors (2024). Unlike conventional connectedness
frameworks that focus on average relationships, this approach enables the examination of dependence
structures across the entire conditional distribution, thereby capturing asymmetries, regime dependent
interactions, and quantile specific spillover dynamics. In doing so, it allows for a clear distinction
between connectedness patterns prevailing during tranquil market conditions and those observed during
periods of heightened volatility or market stress. By adopting this quantile connectedness perspective,
the study offers a more comprehensive depiction of cross market dynamics between sustainability and
digital financial markets, contributing both theoretically and methodologically to the existing literature.

From a practical standpoint, the findings carry important implications for multiple stakeholders. For
investors, identifying the direction and intensity of shock spillovers between sustainability indices and
digitalization indices is essential for effective portfolio diversification, risk management, and asset
allocation strategies. For policymakers, understanding how digital transformation interacts with
sustainability-oriented financial structures provides valuable insights for the formulation of green
finance policies and digital economy regulations. For firms, insights into the degree of synchronization
between digitalization-driven sectoral movements and ESG market performance offer strategic guidance
for aligning sustainability initiatives with digital transformation processes. Accordingly, the study not
only addresses a significant gap in the literature but also enhances the understanding of market dynamics
at the intersection of sustainable finance and the digital economy.

This study consists of five sections. In the second section, the existing research on the relationship
between digitalization and ESG is comprehensively summarized. In the third section, the dataset used
in the study and the methodology based on the QQ Connectedness approach are introduced in detail. In
the fourth section, the dynamic interaction between ESG indices and the digitalisation-themed index is
analysed using the QQ Connectedness method. In the final section, conclusions are drawn based on the
findings, and several recommendations are developed for investors, policymakers, and market
participants.

2. Digitalization and ESG

The literature on the relationship between digitalization/digital transformation and ESG performance
is grounded in the assumption that digital technologies can generate ESG outcomes by rendering firm
level processes data driven, thereby enabling the measurement and reduction of environmental impacts,
enhancing the traceability of social practices, and increasing the transparency of governance
mechanisms. Within this framework, digitalization contributes to ESG performance through channels
such as improving resource efficiency, optimizing processes to reduce emissions and waste, enhancing
reporting quality, and strengthening accountability toward stakeholders (Zhou and Liu 2023; Su et al.
2023; Lu et al. 2024; Li et al. 2024; Yang et al. 2024; Liu et al. 2024). The ESG value creation of
digitalization is also discussed through its role in firm valuation and the market value of digital intangible
assets (e.g., data, software, and platform ecosystems), with the argument that ESG strategies, when
combined with digital transformation, can generate stronger outcomes through valuation channels
(Moro-Visconti 2022).

A substantial share of empirical findings converges on the conclusion that digital transformation
enhances ESG performance. Increases in firms’ levels of digitalization have been shown to improve
ESG scores, a result that has been repeatedly documented using different datasets and model
specifications, particularly within the Chinese context (Fang et al. 2023; Zhao and Cai 2023; Zhong et
al. 2023; Wang et al. 2023a; Wang and Esperanca 2023; Lu et al. 2024; Li et al. 2024; Zheng and Bu
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2024; Liu et al. 2024). This stream of research argues that digitalization strengthens ESG performance
not only through environmental channels but also by enhancing occupational health and safety,
employee welfare, and the monitoring of supplier standards in the social dimension, as well as by
improving internal control, risk management, and reporting quality in the governance dimension
(Eriandani and Winarno 2023; Zhao et al. 2024; Peng et al. 2023). In this context, digitalization has been
conceptualized in some studies as a transformational capability that "unlocks sustainable value",
suggesting that digital transformation, when combined with corporate strategy and implementation
frameworks, systematically enhances ESG performance (Kwilinski et al. 2023).

Mechanism studies emphasize intermediate channels to explain the digital transformation and ESG
relationship. The dynamic capabilities perspective demonstrates that digital transformation indirectly
improves ESG performance by enhancing organizational learning, reconfiguration, and agility
capacities required for adapting to environmental and social objectives (Su et al. 2023). The mediating
role of green innovation further indicates that digital transformation strategies stimulate environmentally
friendly product and process innovations, which subsequently translate into improved ESG outcomes
(Zhao et al. 2023). In manufacturing contexts, innovation capabilities and servitization have been shown
to jointly drive ESG performance, with digital transformation reinforcing these components and thereby
contributing to sustainability outcomes (Chen and Wang 2024). In parallel, the complementary
relationship between digital leadership and ESG management highlights the managerial capacity
dimension of digital transformation by linking it to organizational innovation and sustainability
outcomes (Niu et al. 2022).

The literature also differentiates the digitalization and ESG nexus across sectors. In the energy and
utilities sectors, digitalization and ESG have been found to jointly influence financial performance, with
sectoral characteristics such as capital intensity, regulatory pressure, and carbon costs strengthening this
relationship (Morea et al. 2025). In manufacturing industries, digital transformation enhances ESG
responsibility performance, and the digitally empowered ESG approach has been discussed using
concepts such as "DESG" (Wang et al. 2023; Wang et al. 2023a). In the logistics sector, digitalization
is argued to play a performance-enhancing role for ESG through competitiveness, operational efficiency,
and stakeholder trust (Fan et al. 2025). Evidence from high stakeholder intensive fields such as
healthcare further suggests that ESG and digital transformation can be jointly leveraged to build
sustainable models (Sepetis et al. 2024). Findings from the telecommunications sector complement these
sector explanations by demonstrating that digitalization supports ESG transformation (Vetrova et al.
2022).

Supply chain digitalization constitutes a rapidly expanding substream of the literature. Empirical
evidence across different countries and samples shows that supply chain digitalization improves
corporate ESG performance through enhanced traceability, data integrity, coordination, and risk
management (Chen et al. 2024a; Tian et al. 2025). In this context, supply chain resilience emerges as a
key mediating mechanism, as digital transformation strengthens firms’ ability to withstand supply
shocks and operational vulnerabilities, leading to improvements in ESG performance (Zhang and Huang
2024). Policy designs indicate that institutional frameworks such as supply chain innovation initiatives
and digitalization pilot programs can influence ESG outcomes through supply chain digitalization (Zhu
and Zhang 2024). Particularly in emerging economies, the decarbonization of supply chains requires
multi level analyses of the interaction between regulation, digitalization, and ESG (Okeke 2025).
Broader conceptual discussions, such as "ESG 2.0", further suggest that digitalization can evolve into a
platform that scales sustainability outcomes (Zimin et al. 2024).

Financial channels are also prominent in the digitalization and ESG literature. Studies on digital
finance and corporate ESG show that improved access to finance, enhanced transparency, and reduced
monitoring costs can lead to better ESG performance (Mu et al. 2023). Evidence that digital
transformation jointly affects market performance and ESG performance supports the view that
digitalization represents a "dual-output" strategic capability (Wang and Esperanga 2023; Zheng and Bu
2024; Farinha and de Fatima Pina 2025; de bem Machado et al. 2025; Li et al. 2025). From a productivity
perspective, the relationship between digitalization, ESG performance, and total factor productivity
underscores the complementarity between sustainability and efficiency (Geng et al. 2025). Findings on
digital trade further indicate that transparency, innovation, and internationalization channels associated
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with digitalization can enhance ESG performance by strengthening market integration and openness (Li
et al. 2025a).

The literature does not confine the direction of the relationship to a unidirectional framework.
Evidence that ESG ratings can stimulate digital technology innovation suggests that ESG may act as a
determinant of digital transformation (Hao et al. 2025). Similarly, studies reporting that ESG
performance influences corporate digital transformation indicate that causality may also operate in the
reverse direction (Cheng and Li 2025). These findings imply the presence of simultaneity and feedback
mechanisms within the digitalization-ESG nexus and call for more robust empirical identification
strategies.

Institutional regulations and governance behaviors further highlight the conditional nature of the
digital transformation and ESG relationship. Quasi natural experiment designs based on environmental
regulations and institutional frameworks examine the ESG effects of digital transformation using more
causal approaches (Chen et al. 2024). The joint consideration of digital transformation and governance
practices such as earnings management reveals that ESG performance interacts with reporting incentives
and managerial behaviors (Wang and Hou 2024). The linkage between regional digitalization levels and
firm ESG performance underscores the critical role of digital infrastructure and regional technology
ecosystems in shaping corporate ESG outcomes (Li and Zhu 2024). Moreover, from a resource
efficiency perspective, digitalization plays a macro-level role in improving alignment with ESG
objectives by enhancing the efficiency of resource utilization within the digital economy (Zhou and Liu
2023).

The literature also emphasizes that the relationship between digitalization and ESG may vary
according to different configurations of corporate digital technology sets. It is argued that heterogeneous
combinations of applied digital technologies and implementation scenarios can generate differentiated
ESG outcomes (Chen et al. 2025). From an organizational perspective, digitization paths are considered
decisive in improving ESG performance, highlighting that digital transformation is not merely a
technological investment but also an issue of organizational design and process standardization (Zhao
et al. 2024). Studies employing artificial intelligence, particularly interpretable large language model
approaches, suggest new methodological opportunities for measuring and explaining the digitalization—
ESG relationship by jointly evaluating digitalization outcomes and ESG strategies (Kou et al. 2025). In
the context of corporate decarbonization, digital transformation and ESG are also argued to create
synergies that strengthen emissions reduction performance (Sun et al. 2025).

Bibliometric and systematic review studies indicate that research on digitalization and ESG has
expanded rapidly and diversified thematically, especially after 2023. Bibliometric analyses at the ESG
and digitalization intersection report that dominant themes include supply chain digitalization,
innovation, sectoral applications, governance quality (Tan et al. 2025; Kozar and Bolimowski 2025).
Systematic reviews examining the contribution of digital ESG to the Sustainable Development Goals
integrate digital transformation with resilience and sustainable development objectives at both
institutional and policy levels (Kumar and Shah 2025). Evidence from different business contexts further
confirms that the potential of digitalization to enhance ESG performance is conditioned by sectoral and
organizational characteristics (Agag et al. 2025). A recent integrative review also synthesizes
contemporary developments, case evidence, and relational patterns related to improving ESG
performance through digital transformation, highlighting the maturation of this research field (Yu et al.
2026).

Overall, the literature consistently demonstrates that digitalization generates significant
improvements in ESG performance across environmental, social, and governance dimensions. Digital
technologies support eco efficiency, reduce waste, enhance social well-being, and increase corporate
accountability through improved data management and decision-making processes. In sum, the
integration of digital transformation into corporate sustainability strategies serves as a powerful
mechanism for achieving long term value creation and responsible business conduct across industries.

119



N. Balci Journal of Sustainable Digital Futures 2025 1(2) 115-131

3. Data and methodology

3.1. Data

The study examines the connectivity of the S&P 500 ESG Tilted Index (SPXETUP), the MSCI
World ESG Leaders Index (MIWOOOL2TNUS), and the STOXX Global Digitalisation USD Price Index
(IXDIGITK). In other words, the study aims to measure the interaction between indices based on ESG
performance and digitalization financial market indicators on a global scale. The S&P 500 ESG Tilted
Index, the MSCI World ESG Leaders Index, and the STOXX Global Digitalisation USD Price Index
are three important indicators used to measure the dynamics of sustainability and digital transformation
in global financial markets. SPXETUP provides a sustainability view of the U.S. market by reweighting
companies in the S&P 500 based on ESG criteria. The MSCI World ESG Leaders Index covers a broad
pool of companies from both developed and emerging countries and includes firms that demonstrate
strong ESG performance on a global scale. In contrast, IXDIGITK tracks the stock performance of
companies operating in digitalisation sectors, reflecting market movements associated with the digital
economy. When evaluated together, these three indices allow for a comprehensive analysis of the
interaction between sustainability and digital transformation, cross sectoral interconnectedness, and
market sensitivity.

The daily data are collected from Refinitiv between April 6, 2020, and November 6, 2025, and the
study period depends on data availability. The data series is transformed into a return series
[Ln(P; — P;_;) X 100] to satisfy the stationarity requirement imposed by the Quantile-on-Quantile
(QQ) approach methodology. The return series is demonstrated in Figure 1, and descriptive statistics of
the return series are reported in Table 1. Figure 1 illustrates that from 2020 to 2025, the three indices
display generally stable return behaviour, but a significant market shock occurs in early 2025. The S&P
500 ESG Tilted Index (SPXETUP) and the MSCI World ESG Leaders Index (MIWOOOL2TNUS)
exhibit similar behaviour, reflecting their common ESG focus, while the STOXX Global Digitalisation
USD Price Index (IXDIGITK) demonstrates higher volatility and return potential. ESG investments
react less frequently but more intensely to systemic events, while digital technology exhibits more
frequent reaction.
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Figure 1. Return series of ESG and digitalisation indices
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Table 1 shows that all mean values of indices are positive and above zero. The S&P 500 ESG Tilted
Index (SPXETUP) has the highest mean value (0.074) and the second highest volatility (sd = 1.167),
which shows the index’s growth potential and uncertainty risk. The MSCI World ESG Leaders Index
(MIWOOOL2TNUS) has the second highest mean value (0.068) and the third highest volatility (sd = 0.
972). The negative skewness of all indices indicates vulnerability to external shocks and downturns, and
the high kurtosis values above three suggest the potential for extreme price movements. Moreover, the
null hypothesis of the Jarque-Bera test (1980) null is rejected for all indices, highlighting that the indices
are not normally distributed, and the unit root tests confirm that the indices are stationary. The
correlation matrix indicates a positive relationship between all indices.

Table 1. Descriptive statistics

SPXETUP MIWOO00L2TNUS IXDIGITK
Mean 0.074 0.068 0.053
Median 0.102 0.086 0.120
Maximum 9.253 5.842 7.669
Minimum -6.189 -5.690 -6.082
Std. Dev. 1.167 0.972 1.327
Skewness -0.055 -0.129 -0.058
Kurtosis 8.912 6.958 5.714
Jarque-Bera 2030.890 913.594 428.473
Probability 0.000 0.000 0.000
Unit Root Tests
ADF -39.618*** -34.293** -33.020***
0.000 0.000 0.000
Philips-Perron -40.247*** -34.211** -32.875***
0.000 0.000 0.000
Correlation Matrix
SPXETUP 1.000
MIWOO00OL2TNUS 0.932 1.000
IXDIGITK 0.835 0.881 1.000

Note: *** symbolizes significance at the 1% level.

3.2. Methodology

The study employed the QQ approach developed by Gabauer and Stenfors (2024) to investigate the
relationship between the digitalisation index and the ESG market indices. Building upon the quantile
connectedness approaches of Chatziantoniou et al. (2021) and Ando et al. (2022), this approach
generalizes their methods through the integration of variable cross quantile interdependencies. As a first
step in applying the methodology, quantile-level dependencies are obtained using the Quantile Vector
Autoregressive model of order p, QVAR(p) formulated in Equation (1).

xe = u(™) + Bj(t) x¢—j + u (1) 1)

p
)

J

In this specification, x. and x,_; represent K-dimensional vectors of endogenous variables, with T
capturing the quantile range [0, 1] and p denoting the order of lags used in the QVAR framework. Here,
() refers to the Kx1 conditional mean vector, B;(t) to the KxK coefficient matrix, and u;(7) to the
Kx1 error vector with a corresponding KxK variance-covariance matrix. As a subsequent step, the
QVAR model is converted into a Quantile Vector Moving Average (QVMA) form using the Generalized
Forecast Error Variance Decomposition (GFEVD) technique of Koop et al. (1996), developed by
Gabauer and Stenfors (2024). According to Wold’s Decomposition Theorem, the QVAR process can be
represented as a moving average of past shocks, as shown in Equation (2):

121



N. Balci Journal of Sustainable Digital Futures 2025 1(2) 115-131

p ©
X = u@+ Y B + w® = p@+ ) 4@ uL @ @
j=1 i=0

The formulation in Equation (2) demonstrates the effect of shocks originating from j on the dynamics
of i across an F-step horizon. In this context, is specified as a Kx1 unit vector with one in the ith element
and zeros elsewhere. The formulation in Equation (3) demonstrates the effect of shocks originating from
j on the dynamics of i across an F-step horizon. In this context, e; is specified as a Kx1 unit vector with
one in the ith element and zeros elsewhere. The transmission of a disturbance originating in series j to
series i is assessed using the F-step-ahead GFEVD, as formalized in Equation (3).

E-l(e!A-()H(0)e;)” Py (F
YFo(eiAr(DH()e;) 9SOT,; o (F) = j(F)

— 3
H;(7) Z?;é(ei,Af (0)H(T)Af (T)'ei) ' ?:1 (Pig&j,r (P ®

(Pi!{_j,-[ (F) =

Following Diebold and Yilmaz (2012), the connectedness measure o' (H), is scaled by the total
of its corresponding row to gSOT;.; . (F), which underpins the directional TO/FROM connectedness

metrics. The FROM index captures the incoming connectedness to series i, whereas the TO index
measures its outgoing influence on the remaining variables, as formalized in Equations (4) and Equation

(5).

SENE = ) gSOTees @
k=1,i#]
K
S{L(J_e.r’ttyfrom _ Z 9SOT; y.+ (5)
k=1,i#j

The net aggregate directional connectedness, as expressed in Equation (6), is obtained by subtracting
the FROM measure from the TO measure for a given series.

,net ,t )
Sl:g:nne — S:gen o S:genfrom (6)

i—e,T i—eT

The condition S7¢™™°* > 0 designates series i as a net shock transmitter, while SZ°"™" < 0

categorizes it as a net shock receiver. Finally, the adjusted TCI, bounded between 0 and 1 and developed
by Chatziantoniou et al. (2021), is calculated using Equation (7).

K K
K
TCL(F) = = ) SEM™™ = ) sperte @)
k=1 k=1

4, Empirical results

The study employed 60-month rolling window quantile autocorrelation (QVAR) models with a six-
step forecasting horizon for both the ESG index and the digitalization index to examine the
interconnection between them. The average dynamic connectedness results for the S&P 500 ESG Tilted
Index (SPXETUP) and STOXX Global Digitalisation USD Price Index (IXDIGITK) pair are
demonstrated in Figure 2. The average dynamic connectedness quantiles range from 0.05 to 0.95 with
intervals of 0.225 between consecutive quantiles. The intensity of blue coloration corresponds to the
degree of interconnectedness, with darker tones signifying robust connections and lighter tones, fading
to white, indicating minimal linkage.

The results display that the peak average total connectedness (94%) for the S&P 500 ESG Tilted
Index (SPXETUP) and STOXX Global Digitalisation USD Price Index (IXDIGITK), observed at a
point in the distribution where the relationship is directly related quantiles, 7; = 0.05, 7, = 0.05.
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Moreover, the total connectedness results are likewise observed to peak at the same quantile for
remaining quantiles. For instance, the average total connectedness is 93.7% for the S&P 500 ESG Tilted
Index (SPXETUP) and the STOXX Global Digitalisation USD Price Index (IXDIGITK) index at the
95th quartiles. The total connectedness indices are generally higher at the directly related extreme
quantiles (i.e., [t; =0.95, T, =0.95] and [t; =0.05, 7, = 0.05], representing the southwest and northeast
corners) than at the reversely related extremes ([t; = 0.95, 7, = 0.05] and [z, = 0.05, t, = 0.95],
corresponding to the northwest and southeast corners).
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Figure 2. Quantile total connectedness indices for SPXETUP and IXDIGITK

The average dynamic connectedness results for the MSCI World ESG Leaders index
(MIWOOOL2TNUS) and the STOXX Global Digitalisation USD Price Index (IXDIGITK) pair are
displayed in Figure 3. The results demonstrate that the peak average total connectedness (95.6%) for
the MSCI World ESG Leaders index (MIWOOQOOL2TNUS) and STOXX Global Digitalisation USD Price
Index (IXDIGITK), observed at a point in the distribution where the relationship is directly related to
quantiles, ;= 0.05, t,= 0.05. Moreover, the total connectedness results are likewise observed to peak
at the same quantile for remaining quantiles. For example, the average total connectedness is 94.9% for
the MSCI World ESG Leaders index (MIWOO0OL2TNUS) and the STOXX Global Digitalisation USD
Price Index (IXDIGITK) index at the 95th quartiles. The total connectedness indices are generally higher
at the directly related extreme quantiles (i.e., [t; = 0.95, 7, = 0.95] and [r; = 0.05, 7, = 0.05],
representing the southwest and northeast corners) than at the reversely related extremes ([z; = 0.95, 7, =
0.05] and [r4 = 0.05, T, = 0.95], corresponding to the northwest and southeast corners).
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Figure 3. Quantile total connectedness indices for SPXETUP and MIWOOOL2TNUS

Figure 4 plots the dynamic total connectedness indices (direct and inverse) and their differences
(ATCI) to capture temporal patterns of parallel and counter directional interconnectedness for the S&P
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500 ESG Tilted index (SPXETUP) and the STOXX Global Digitalisation USD Price index
(IXDIGITK). The results display that direct TCI exceeds reverse TCI, indicating a strong positive
linkage between the series.

The consistently negative ATCI values throughout the sample period indicate a strong unidirectional
influence from the S&P 500 ESG Tilted index (SPXETUP) to the STOXX Global Digitalisation USD
Price index (IXDIGITK). The dominance of the direct TCl suggests that the dynamics of the
sustainability sector have a significant impact on the digital technology sector. The lack of reverse
dominance suggests that developments in the digital sector do not significantly impact the sustainability
index during this time frame. This likely reflects how sustainability mandates, green capital flows, and
investor screening practices affect the tech-heavy index, rather than vice versa.
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Figure 4. Direct and reverse total connectedness indices for SPXETUP and IXDIGITK

Figure 5 displays the dynamic total connectedness indices (direct and inverse) and their differences
(ATCI) to capture temporal patterns of parallel and counter directional interconnectedness for the MSCI
World ESG Leaders index (MIWOOOL2TNUS) and the STOXX Global Digitalisation USD Price index
(IXDIGITK). The results indicate that direct TCI exceeds reverse TCI, suggesting a strong positive
correlation between the series.

The persistent dominance of the direct TCl from MSCI World ESG Leaders Index
(MIWOOOL2TNUS) to the digital technology sector suggests a strong transmission channel driven by
global sustainability trends. Negative ATCI values indicate that ESG market dynamics have a greater
influence on digital technology firms than vice versa. This asymmetric impact may stem from increased
regulatory, investment, and reputational pressures on tech firms to comply with ESG standards, while
innovations in the tech sector have not yet significantly reshaped the overall composition of the ESG
index.
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Figure 5. Direct and reverse total connectedness indices for SPXETUP and MIWOOOL2TNUS
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Lastly, the study examines net directional connectedness across quantiles, and Figure 6 presents the
results of net directional connectedness between the S&P 500 ESG Tilted index (SPXETUP) and the
STOXX Global Digitalisation USD Price index (IXDIGITK). A three-color scale is utilized in Figure
6, with blue indicating elevated positive values, white reflecting neutral or near zero values, and red
signifying negative extremes. Within the quantiles, positive values are associated with the S&P 500
ESG Tilted index (SPXETUP), which functions as a net transmitter, while negative values correspond
to the STOXX Global Digitalisation USD Price index (IXDIGITK), taking on that role.
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Figure 6. Net Quantile connectedness between SPXETUP and IXDIGITK

The quantile net TCI heatmap reveals an asymmetric information transmission structure between the
ESG-tilted equity market and the digital technology sector. While the SPXETUP index acts as a net
transmitter during periods of low ESG performance and mid level digital performance, it becomes a net
receiver when the digital sector is in high or low extremes. The most substantial influence occurs when
SPXETUP is at its weakest (z = 0.05), highlighting the vulnerability of ESG indices to shocks
originating in the technology sector. This supports the view that digital market dynamics exert nontrivial
feedback effects on sustainability portfolios, particularly in volatile environments.

Figure 7 illustrates the results of net directional connectedness between the MSCI World ESG
Leaders index (MIWOOOL2TNUS) and the STOXX Global Digitalisation USD Price index
(IXDIGITK). Figure 7 employs a three color gradient, where blue denotes high (positive) values, white
represents values near zero, and red corresponds to low (negative) values. Within the quantiles, positive
values are associated with the MSCI World ESG Leaders index (MIWOOOL2TNUS), which acts as a
net transmitter, while negative values correspond to the STOXX Global Digitalisation USD Price index
(IXDIGITK), assuming that role.
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Figure 7. Net Quantile connectedness between MIWOOQOOL2TNUS and IXDIGITK
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The quantile spillover structure indicates an asymmetric dependence between the MSCI World ESG
Leaders Index (MIWOOOL2TNUS) and the digital technology sector. At lower ESG quantiles and
moderate levels of digital index performance, the ESG index acts as a strong net transmitter. However,
across most moderate to high quantiles of the ESG index, it becomes a significant net receiver, especially
when the digital sector is in its tails. This implies that under normal or booming ESG conditions, the
digital technology sector plays a more influential role in transmitting shocks or information to ESG-
aligned assets.

5. Concluding remarks and policy suggestions

The findings of this study show that the relationship between sustainability and digitalization is
strong but asymmetric, thereby supporting much of the current literature. Similar to many studies
demonstrating that digital transformation improves ESG performance (Fang et al. 2023; Lu et al. 2024;
Kwilinski et al. 2023), the results of this analysis confirm the presence of a highly dynamic
interconnectedness between sustainability-themed indicators and digital technology markets. The
observation that digitalization enhances corporate transparency, optimizes data processes, and supports
technologies that reduce environmental impact (Zhou and Liu 2023; Su et al. 2023) aligns with the
current study’s finding of deep integration between these domains. Additionally, the evidence showing
that the digital sector can dominate sustainability markets during volatile periods (Wang and Esperanca
2023; Zhao et al. 2024) is clearly reflected in the current results. Conversely, in periods when
sustainability-related policies and regulations strengthen, ESG indicators appear to exert a more
influential role over the digital sector, which is consistent with studies emphasizing the market directing
power of sustainability focused investor behavior (Agag et al. 2025; Morea et al. 2025). Thus, the
findings demonstrate not only that the ESG-digitalization nexus is reciprocal, as indicated in the
literature, but also that this relationship varies by context, period, and market conditions.

The results reveal that the interaction between sustainability and digitalization markets does not
follow a stable structure but instead varies over time and is highly sensitive to market shocks. The fact
that the digital sector becomes a dominant actor over sustainability assets during turbulent periods
suggests that rapid innovation cycles, artificial intelligence applications, developments in data security,
and platform-economy dynamics directly shape ESG related investment behavior. Conversely, in
periods when environmental and social responsibility regulations strengthen, sustainability indicators
appear to play a more guiding and stabilizing role over digitalization markets. This reciprocal yet
asymmetric structure reflects investors’ growing sensitivity to evolving sustainability norms, the
increasing regulatory pressure faced by technology firms, and the rising degree to which green-transition
expectations are priced into global markets. At the same time, the results indicate a mutual adjustment
process: sustainability-linked assets increasingly benefit from digital innovation, while the digital sector
simultaneously restructures itself in accordance with ESG principles and stakeholder expectations.

The findings of this study offer important strategic implications for policymakers, investors, and
firms operating at the intersection of sustainability and digitalization. The strong interdependence
observed between sustainability and digitalization markets indicates that regulatory frameworks would
benefit from more explicitly embedding ESG principles within digital finance, data governance, and
artificial intelligence-related activities. Integrating sustainability considerations into technology-
oriented regulations may help mitigate sustainability related risks while enhancing transparency,
particularly in sectors undergoing rapid digital transformation. From an investment perspective, the
results suggest that portfolio construction and diversification strategies should extend beyond
conventional ESG performance metrics to incorporate the cyclical behavior, volatility characteristics,
and market influence of digitalization-oriented assets. As digital sector dynamics can exert a pronounced
influence on sustainability focused portfolios during certain market conditions, explicitly accounting for
these interactions within risk management and asset allocation frameworks may contribute to more
resilient investment outcomes.

At the firm level, the evidence highlights the relevance of adopting an integrated strategic orientation
that aligns sustainability objectives with digital transformation initiatives. In line with existing findings
that digitalization can enhance ESG performance, firms may improve their sustainability outcomes by
systematically deploying digital technologies in areas such as carbon-emissions monitoring, supply

126



N. Balci Journal of Sustainable Digital Futures 2025 1(2) 115-131

chain transparency, and resource efficiency management. Such integration enables more effective
operationalization of sustainability goals while strengthening monitoring and reporting capabilities. The
increasing prominence of sustainability norms within digitally intensive sectors further underscores the
importance of robust ESG disclosure practices and sustainability innovation among technology firms.
Regular reporting of environmental and social performance, together with investments in ESG’s
technological solutions, may enhance market credibility and support long term value creation. More
broadly, these practices can facilitate the transition toward a digital economy that is increasingly aligned
with sustainability principles.

This study examines the global digitalization and ESG connectedness based on three key indices
(S&P 500 ESG Tilted Index, MSCI World ESG Leaders Index, and STOXX Global Digitalisation
Index). However, since the analysis includes only these specific indices, it may not fully capture all
digitalization dynamics or all components of ESG within the broader market. Future research may
conduct a more detailed analysis of the relationship between digitalization strategies and ESG
performance by employing more micro level datasets at the firm or sector level. In particular, studies
measuring the effects of artificial intelligence investments, data analytics capacity, and sustainable
technology applications on ESG scores would make a significant contribution to the literature. In
addition, comparative analyses across different countries or regions can more clearly reveal the role of
institutional structures, regulatory frameworks, and technological maturity levels in shaping
connectedness.

Declaration of competing interest

The author declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Acknowledgments

The views expressed in this study are those of the author.

References

Agag, G., Aboul-Dahab, S., El-Halaby, S., Abdo, S., & Khashan, M. A. (2025). Leveraging
digitalization to boost ESG performance in different business contexts. Sustainability, 17(15), 6899.
https://doi.org/10.3390/su17156899

Ando, T., Greenwood-Nimmo, M., & Shin, Y. (2022). Quantile connectedness: Modeling tail behavior
in the topology of financial networks. Management Science, 68(4), 2401-2431.
https://doi.org/10.1287/mnsc.2021.3984

Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Interest rate swaps and the transmission
mechanism of monetary policy: A gquantile connectedness approach. Economics Letters, 204,
109891. https://doi.org/10.1016/j.econlet.2021.109891

Chen, D., & Wang, S. (2024). Digital transformation, innovation capabilities, and servitization as drivers
of ESG performance in manufacturing SMEs. Scientific  Reports, 14(1), 24516.
https://doi.org/10.1038/s41598-024-76416-8

Chen, L., Chen, Y., & Gao, Y. (2024). Digital transformation and ESG performance: A quasinatural
experiment based on China’s environmental protection law. International Journal of Energy
Research, 2024(1), 8895846. https://doi.org/10.1155/2024/8895846

Chen, S., Leng, X., & Luo, K. (2024a). Supply chain digitalization and corporate ESG
performance. American ~ Journal  of  Economics and  Sociology, 83(4),  855-881.
https://doi.org/10.1111/ajes.12596

127


https://doi.org/10.3390/su17156899
https://doi.org/10.1287/mnsc.2021.3984
https://doi.org/10.1016/j.econlet.2021.109891
https://doi.org/10.1038/s41598-024-76416-8
https://doi.org/10.1155/2024/8895846
https://doi.org/10.1111/ajes.12596

N. Balci Journal of Sustainable Digital Futures 2025 1(2) 115-131

Chen, Y. Qu, Y., & Zhu, Q. (2025). Digital transformation for corporate ESG performance:
Configurations of applied digital technologies and digital technology application
scenarios. Industrial Management & Data Systems, 125(9), 2665-2692.
https://doi.org/10.1108/IMDS-10-2024-1014

Cheng, Y., & Li, H. (2025). The impact of ESG performance on corporate digital
transformation. Environment, Development and Sustainability, 1-28.
https://doi.org/10.1007/s10668-025-06012-x

de bem Machado, A., Pesqueira, A., Santos, J. R. D., Sacavém, A., & Sousa, M. J. (2025). ESG and
digital transformation in organizations. In Environmental, social, governance and digital
transformation in organizations (pp. 1-32). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-031-86079-9 1

Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement
of volatility spillovers. International Journal of Forecasting, 28(1), 57-66.
https://doi.org/10.1016/j.ijforecast.2011.02.006

Eriandani, R., & Winarno, W. A. (2023). ESG and firm performance: The role of digitalization. Journal
of Accounting and Investment, 24(3), 993-1010. https://doi.org/10.18196/jai.v24i3.20044

Fama, E. F., & Jensen, M. C. (1983). Separation of ownership and control. The Journal of Law and
Economics, 26(2), 301-325. https://doi.org/10.1086/467037

Fan, M., Tang, Y., Qalati, S. A., & lbrahim, B. (2025). Can logistics enterprises improve their
competitiveness through ESG in the context of digitalization? Evidence from China. The
International Journal of Logistics Management, 36(1), 196-224. https://doi.org/10.1108/1JLM-05-
2023-0216

Fang, M., Nie, H., & Shen, X. (2023). Can enterprise digitization improve ESG performance?. Economic
Modelling, 118, 106101. https://doi.org/10.1016/j.econmod.2022.106101

Farinha, J., & de Fatima Pina, M. (2025). Digital transformation in ESG programs: Understanding
environmental, social, and governance factors. In Environmental, social, governance and digital
transformation in  organizations (pp. 33-49). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-86079-9 2

Gabauer, D., & Stenfors, A. (2024). Quantile-on-quantile connectedness measures: Evidence from the
us treasury yield curve. Finance Research Letters, 60, 104852.
https://doi.org/10.1016/j.frl.2023.104852

Geng, Y., Zheng, Z., Yuan, X., & Jiménez-Zarco, A. |. (2025). ESG performance and total factor
productivity of enterprises: The role of digitization. Research in International Business and Finance,
102920. https://doi.org/10.1016/j.ribaf.2025.102920

Hao, P., Alharbi, S. S., Hunjra, A. |., & Zhao, S. (2025). How do ESG ratings promote digital technology
innovation?. International Review of Financial Analysis, 97, 103886.
https://doi.org/10.1016/j.irfa.2024.103886

Jensen, M. C., & Meckling, W. H. (2019). Theory of the firm: Managerial behavior, agency costs and
ownership  structure. In Corporate  governance (pp. 77-132). Gower. Available at:
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315191157-9/theory-firm-managerial-
behavior-agency-costs-ownership-structure-michael-jensen-william-meckling

Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate
models. Journal of Econometrics, 74(1), 119-147. https://doi.org/10.1016/0304-4076(95)01753-4

Kou, H., Tang, R., & Chen, N. (2025). Enterprise digitalization and ESG performance: Evidence from
interpretable Al large language models. Systems, 13(9), 832.
https://doi.org/10.3390/systems13090832

Kozar, L. J., & Bolimowski, S. (2025). ESG and digital transformation: Bibliometric review. Procedia
Computer Science, 270, 851-860. https://doi.org/10.1016/].procs.2025.09.205

128


https://doi.org/10.1108/IMDS-10-2024-1014
https://doi.org/10.1007/s10668-025-06012-x
https://doi.org/10.1007/978-3-031-86079-9_1
https://doi.org/10.1016/j.ijforecast.2011.02.006
https://doi.org/10.18196/jai.v24i3.20044
https://doi.org/10.1086/467037
https://doi.org/10.1108/IJLM-05-2023-0216
https://doi.org/10.1108/IJLM-05-2023-0216
https://doi.org/10.1016/j.econmod.2022.106101
https://doi.org/10.1007/978-3-031-86079-9_2
https://doi.org/10.1016/j.frl.2023.104852
https://doi.org/10.1016/j.ribaf.2025.102920
https://doi.org/10.1016/j.irfa.2024.103886
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315191157-9/theory-firm-managerial-behavior-agency-costs-ownership-structure-michael-jensen-william-meckling
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315191157-9/theory-firm-managerial-behavior-agency-costs-ownership-structure-michael-jensen-william-meckling
https://doi.org/10.1016/0304-4076(95)01753-4
https://doi.org/10.3390/systems13090832
https://doi.org/10.1016/j.procs.2025.09.205

N. Balci Journal of Sustainable Digital Futures 2025 1(2) 115-131

Kumar, S., & Shah, P. (2025). Digital ESG as a catalyst for achieving the sustainable development goals:
A systematic review and bibliometric analysis of digital transformation for a resilient
future. Sustainable Futures, 10, 101458. https://doi.org/10.1016/j.sftr.2025.101458

Kwilinski, A., Lyulyov, O., & Pimonenko, T. (2023). Unlocking sustainable value through digital
transformation:.  An  examination of ESG  performance. Information, 14(8),  444.
https://doi.org/10.3390/info14080444

Li, Y., & Zhu, C. (2024). Regional digitalization and corporate ESG performance. Journal of Cleaner
Production, 473, 143503. https://doi.org/10.1016/j.jclepro.2024.143503

Li, Y., Zheng, Y., Li, X., & Mu, Z. (2024). The impact of digital transformation on ESG
performance. International Review of Economics & Finance, 96, 103686.
https://doi.org/10.1016/]j.iref.2024.103686

Li, R., Zahra, K., Najam, H., & Jia, S. (2025). Examining the role of digitalization and ESG strategies
in enhancing resilience and sustainable performance of SMEs. International Entrepreneurship and
Management Journal, 21(1), 108. https://doi.org/10.1007/s11365-025-01105-5

Li, P, Li, X.,, & Wu, Q. (2025a). Digitalization drives Sustainability: How digital trade enhances
corporate ESG performance through innovation, internationalization and transparency. International
Review of Economics & Finance, 104248. https://doi.org/10.1016/].iref.2025.104248

Liu, H., Duan, H., & Li, M. (2024). Enterprise digital transformation and ESG performance. Energy &
Environment, 0958305X241246186. https://doi.org/10.1177/0958305X241246186

Lu, Y., Xu, C., Zhu, B., & Sun, Y. (2024). Digitalization transformation and ESG performance:
Evidence from China. Business Strategy and the Environment, 33(2), 352-368.
https://doi.org/10.1002/bse.3494

Morea, D., lazzolino, G., Giglio, C., Bruni, M. E., Baldissarro, G., & Farinelli, E. (2025). The role of
digitalization and ESG on financial performance: An empirical analysis on the Energy and Utilities
sectors. PloS one, 20(2), e0314078. https://doi.org/10.1371/journal.pone.0314078

Moro-Visconti, R. (2022). Digitalization and ESG-driven valuation. In The valuation of digital
intangibles: Technology, marketing, and the metaverse (pp. 685-764). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-031-09237-4 23

Mu, W., Liu, K., Tao, Y., & Ye, Y. (2023). Digital finance and corporate ESG. Finance Research
Letters, 51, 103426. https://doi.org/10.1016/].frl.2022.103426

Niu, S., Park, B. I., & Jung, J. S. (2022). The effects of digital leadership and ESG management on
organizational innovation and sustainability. Sustainability, 14(23), 15639.
https://doi.org/10.3390/su142315639

Okeke, A. (2025). Decarbonizing supply chains in emerging economies: A multilevel analysis of
regulation, ESG, and digitalization. Global Journal of Emerging Market Economies,
09749101251387365. https://doi.org/10.1177/09749101251387365

Peng, Y., Chen, H., & Li, T. (2023). The impact of digital transformation on ESG: A case study of
Chinese-listed companies. Sustainability, 15(20), 15072. https://doi.org/10.3390/su152015072

Sepetis, A., Rizos, F., Pierrakos, G., Karanikas, H., & Schallmo, D. (2024,). A sustainable model for
healthcare systems: The innovative approach of ESG and digital transformation. Healthcare, 12(2),
156. https://doi.org/10.3390/healthcare12020156

Su, X., Wang, S., & Li, F. (2023). The impact of digital transformation on ESG performance based on
the mediating effect of dynamic capabilities. Sustainability, 15(18), 13506.
https://doi.org/10.3390/su151813506

Sun, Y., Lu, Y., Wu, Y., Xu, C., & Davey, H. (2025). Synergizing ESG and digital transformation for
corporate decarbonization. Business Strategy and the Environment.
https://doi.org/10.1002/bse.70262

129


https://doi.org/10.1016/j.sftr.2025.101458
https://doi.org/10.3390/info14080444
https://doi.org/10.1016/j.jclepro.2024.143503
https://doi.org/10.1016/j.iref.2024.103686
https://doi.org/10.1007/s11365-025-01105-5
https://doi.org/10.1016/j.iref.2025.104248
https://doi.org/10.1177/0958305X241246186
https://doi.org/10.1002/bse.3494
https://doi.org/10.1371/journal.pone.0314078
https://doi.org/10.1007/978-3-031-09237-4_23
https://doi.org/10.1016/j.frl.2022.103426
https://doi.org/10.3390/su142315639
https://doi.org/10.1177/09749101251387365
https://doi.org/10.3390/su152015072
https://doi.org/10.3390/healthcare12020156
https://doi.org/10.3390/su151813506
https://doi.org/10.1002/bse.70262

N. Balci Journal of Sustainable Digital Futures 2025 1(2) 115-131

Tan, Q. L., Hashim, S., & Zheng, Z. (2025). Environmental social governance (ESG) in digitalization
research: A bibliometric analysis. SAGE Open, 15(1), 21582440241310953.
https://doi.org/10.1177/21582440241310953

Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic
Management Journal, 18(7), 509-533. https://doi.org/10.1002/(SIC1)1097-
0266(199708)18:7%3C509::AlD-SMJ882%3E3.0.CO;2-Z

Tian, L., Tian, W., & Guo, M. (2025). Can supply chain digitalization open the way to sustainable
development? Evidence from corporate ESG performance. Corporate Social Responsibility and
Environmental Management, 32(2), 2332-2346. https://doi.org/10.1002/csr.3067

Vetrova, M., Solovey, T., Arenkov, I., & lvanova, D. (2022). The impact of digitalization on the
telecommunications sector ESG transformation. In International scientific conference on digital
transformation in industry: Trends, management, strategies (pp. 181-192). Cham: Springer Nature
Switzerland. https://doi.org/10.1007/978-3-031-30351-7_15

Wang, S., & Esperanga, J. P. (2023). Can digital transformation improve market and ESG performance?
Evidence from  Chinese =~ SMEs. Journal ~of  Cleaner  Production, 419,  137980.
https://doi.org/10.1016/j.jclepro.2023.137980

Wang, J., Hong, Z., & Long, H. (2023). Digital transformation empowers ESG performance in the
manufacturing industry: From ESG to DESG. Sage Open, 13(4), 21582440231204158.
https://doi.org/10.1177/21582440231204158

Wang, H., Jiao, S., Bu, K., Wang, Y., & Wang, Y. (2023a). Digital transformation and manufacturing
companies’ ESG responsibility —performance. Finance Research Letters, 58, 104370.
https://doi.org/10.1016/j.frl.2023.104370

Wang, L., & Hou, S. (2024). The impact of digital transformation and earnings management on ESG
performance: Evidence from Chinese listed enterprises. Scientific Reports, 14(1), 783.
https://doi.org/10.1038/s41598-023-48636-x

Yang, P., Hao, X., Wang, L., Zhang, S., & Yang, L. (2024). Moving toward sustainable development:
The influence of digital transformation on corporate ESG performance. Kybernetes, 53(2), 669-687.
https://doi.org/10.1108/K-03-2023-0521

Yu, Y., Chan, H. L., & Cho, E. (2026). Enhancing ESG performance through digital transformation:
Recent development, cases and relationships. Journal of Business Research, 202, 115763.
https://doi.org/10.1016/j.jbusres.2025.115763

Zhang, M., & Huang, Z. (2024). The impact of digital transformation on ESG performance: The role of
supply chain resilience. Sustainability, 16(17), 7621. https://doi.org/10.3390/su16177621

Zhao, X., & Cai, L. (2023). Digital transformation and corporate ESG: Evidence from China. Finance
Research Letters, 58, 104310. https://doi.org/10.1016/j.frl.2023.104310

Zhao, Q., Li, X., & Li, S. (2023). Analyzing the relationship between digital transformation strategy
and ESG performance in large manufacturing enterprises: The mediating role of green
innovation. Sustainability, 15(13), 9998. https://doi.org/10.3390/su15139998

Zhao, F., Han, Z., & Wang, L. (2024). Digitization path to improve ESG performance: A study on
organizational perspectives. PloS one, 19(12), €0313686.
https://doi.org/10.1371/journal.pone.0313686

Zheng, X., & Bu, Q. (2024). Enterprise ESG performance, digital transformation, and firm performance:
Evidence from China. Sage Open, 14(4), 21582440241291680.
https://doi.org/10.1177/21582440241291680

Zhong, Y., Zhao, H., & Yin, T. (2023). Resource bundling: How does enterprise digital transformation
affect enterprise ESG development?. Sustainability, 15(2), 13109.
https://doi.org/10.3390/5u15021319

130


https://doi.org/10.1177/21582440241310953
https://doi.org/10.1002/(SICI)1097-0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z
https://doi.org/10.1002/csr.3067
https://doi.org/10.1007/978-3-031-30351-7_15
https://doi.org/10.1016/j.jclepro.2023.137980
https://doi.org/10.1177/21582440231204158
https://doi.org/10.1016/j.frl.2023.104370
https://doi.org/10.1038/s41598-023-48636-x
https://doi.org/10.1108/K-03-2023-0521
https://doi.org/10.1016/j.jbusres.2025.115763
https://doi.org/10.3390/su16177621
https://doi.org/10.1016/j.frl.2023.104310
https://doi.org/10.3390/su15139998
https://doi.org/10.1371/journal.pone.0313686
https://doi.org/10.1177/21582440241291680
https://doi.org/10.3390/su15021319

N. Balci Journal of Sustainable Digital Futures 2025 1(2) 115-131

Zhou, H., & Liu, J. (2023). Digitalization of the economy and resource efficiency for meeting the ESG
goals. Resources Policy, 86, 104199. https://doi.org/10.1016/].resourpol.2023.104199

Zhu, Y., & Zhang, Z. (2024). Supply chain digitalization and corporate ESG performance: Evidence
from supply chain innovation and application pilot policy. Finance Research Letters, 67, 105818.
https://doi.org/10.1016/j.frl.2024.105818

Zimin, A., Sedova, N., & Pulyavina, N. (2024, January). ESG 2.0: Revolutionizing sustainability
through the power of digitalization. In International workshop on cultural perspectives of human-
centered and technological innovations (pp. 273-282). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-77012-8 21

131


https://doi.org/10.1016/j.resourpol.2023.104199
https://doi.org/10.1016/j.frl.2024.105818
https://doi.org/10.1007/978-3-031-77012-8_21

Journal of Sustainable Digital Futures 2025 1(2)

Journal of Sustainable Digital Futures
journal homepage: https://jsdf.org.tr/

Journal of Sustainable Digital Futures Journal of Sustainable Digital Futures

JSDF JSDF

The impact of ICT, technological innovation, and digitalisation on achieving sustainable
development goals in G20 economies

Havva KOC!

HIGHLIGHTS

! istanbul Okan University, istanbul, Tiirkiye, havva.koc@okan.edu.tr

ARTICLE INFO ABSTRACT

Keywords: Digital transformation exhibits a dual nature: while it acts as a catalyst for
sustainable development through innovation, efficiency, and inclusion, it
simultaneously generates new risks such as energy intensity, inequality, and
digital dependency. This study examines the long-run relationship between
information and communication technologies (ICTs), digitalisation, technological
innovation, and economic growth in the context of sustainable development for
14 G20 countries over the period 2000-2021. The analysis employs second-
generation panel data techniques that account for cross-sectional dependence,
heterogeneity, and structural breaks. The Durbin-Hausman and Westerlund-
Edgerton cointegration tests confirm the existence of a long-term equilibrium
relationship among the variables. Long-run coefficients are estimated by the
Common Correlated Effects Mean Group (CCEMG) and Augmented Mean Group
(AMG) models. The results indicate that digitalisation and economic growth have
significant effects on sustainable development, whereas ICT exports and
technological innovation display weaker linkages. The Dumitrescu-Hurlin panel
causality test further reveals bidirectional causality between digitalisation and
sustainable development, and unidirectional causality running from economic
growth to sustainable development. Overall, the findings highlight the dual role
of digital transformation as both a driver and a disruptor of sustainable
development, emphasizing the need for balanced policy strategies that maximize
digital benefits while minimizing sustainability risks assessment.

Digital transformation
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Technological innovation
Sustainable development
G20 countries

1. Introduction

Rapid advances in information and communication technologies have redefined the dynamics of
economic growth and highlighted the digital dimension of sustainable development. Digitalisation
creates potential for efficiency, innovation, and inclusiveness across a wide range of areas, from
production processes to public administration. However, this transformation also brings challenges such
as higher energy consumption, data-intensive production, income inequality, and the digital divide, all
of which may hinder sustainable development. Therefore, digital transformation has a dual nature, acting
both as a driver of sustainability and a source of new risks.

This dual structure makes it necessary to analyse the economic, environmental, and social dimensions
of digitalisation in an integrated framework. On one hand, digital technologies improve resource
efficiency and reduce environmental pressures. On the other hand, growing energy demand and
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electronic waste generation threaten environmental sustainability. Thus, the effect of digital
transformation on sustainable development may differ depending on a country’s technological capacity,
energy infrastructure, and quality of institutional governance.

Recent research has shown that digitalisation positively influences economic performance, green
innovation, and energy efficiency. Yet, these effects fluctuate over time due to structural breaks, policy
changes, and technological inequalities. Hence, analysing the relationship between digital
transformation and sustainable development requires methods that consider both long-term integration
and cross-country heterogeneity.

This study investigates the effects of ICT service exports (LNICT), digitalisation (LNDIJIT),
technological innovation (LNTECIN), and economic growth (LNGDP) on sustainable development
(SDG) in 14 G20 countries from 2000 to 2021. Second-generation panel data techniques, which account
for structural breaks and country-specific differences, are employed to examine the dual nature of digital
transformation from a sustainability perspective.

The research problem stems from the limited empirical evidence on how digitalisation and ICT shape
sustainable development both positively and negatively. There is a lack of comprehensive studies that
explicitly account for structural breaks and national differences. This study seeks to answer the question:
How do ICT, digitalisation, and economic growth influence sustainable development under structural
breaks?

The main objective is to present a balanced view of the positive and negative impacts of digital
transformation on sustainable development. Accordingly, the study aims to provide policy implications
that enhance the benefits of digitalisation while mitigating its potential risks.

This research contributes to the literature by analysing the effects of digital transformation on
sustainable development within the G20 context and under structural breaks. It jointly considers ICT,
digitalisation, and technological innovation, offering a holistic perspective on the dynamics of
sustainability. Moreover, it employs second-generation panel data methods (CIPS, Westerlund-
Edgerton, CCEMG, and AMG) to statistically capture cross-country heterogeneity. In doing so, it
provides an original methodological and conceptual contribution to the digitalisation-development
nexus.

The remainder of the paper is structured as follows. Section 2 reviews the literature on the
relationship between ICT, digitalisation, technological innovation, and sustainable development.
Section 3 introduces the dataset, variables, and econometric methods used, followed by the empirical
findings. Section 4 discusses the results in light of the existing literature. The final section presents the
main conclusions and policy recommendations concerning the interaction between digital
transformation and sustainable development.

2. Literature review

The rapid expansion of information and communication technologies (ICT) in the global economy
has led to numerous studies exploring the interaction among economic growth, digitalization, and
sustainable development. The literature has examined how digital transformation influences
sustainability through production, trade, green innovation, and governance channels. In recent years,
panel data-based research has quantitatively revealed the long-term effects of ICT on economic and
environmental sustainability.

Evidence supporting the notion that sustainable development can be fostered through digitalization
and economic growth channels has been growing steadily. Studies covering the European Union (EU)
and OECD countries confirm that digital technologies enhance economic performance and improve
sustainability indicators (Bocean and Varzaru 2023; Fernandez-Portillo et al. 2019; Giirler 2023;
Herman 2022). Digital transformation has been shown to strengthen GDP growth and employment via
e-commerce, ICT services, and high-tech sectors, thereby directly contributing to development by
boosting productivity. Research on ASEAN countries demonstrates that digitalization accelerates
growth through openness and education expenditures (Nurdiana et al. 2023), while in South Asia digital
financial inclusion reduces poverty and supports inclusive growth (Safdar et al. 2024).

In a complementary line of inquiry, Cioacd et al. (2020) emphasize that digital transformation
enhances competitiveness and sustainable development performance in EU economies by fostering
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technological adaptation and green innovation. Similarly, Antoniuk and Davydenko (2024) highlight
that leveraging digital technologies enhances inclusive growth by improving citizens’ access to quality
services such as education and healthcare, thereby reinforcing the sustainable competitiveness of
national economies.

Likewise, studies conducted in China confirm the positive effects of the digital economy on income
levels and development quality. Within the framework of the "Broadband China" policy, the expansion
of digital infrastructure has been found to raise income levels while deepening income inequality in
favor of high-skilled labor (Kong et al. 2023). This suggests that while the digital economy strengthens
growth, it may also produce heterogeneous social effects. Analyses on OECD countries show that ICT
and financial access simultaneously feed the bright and dark sides of digitalization; while supporting
growth through production and export channels, they also raise ethical and security issues (Alraja et al.
2023). At the same time, Balli (2023) highlights the emerging challenges of digital transformation—
such as unemployment, cybersecurity, and intellectual-property concerns—and proposes solutions to
mitigate the social and economic risks accompanying the transition toward a digital economy.

The environmental and technological dimensions of digitalization have also been widely examined.
Studies focusing on China and Belt-and-Road countries demonstrate that digital and technological
progress has significant positive effects on sustainable growth and environmental performance (Zhao et
al. 2022; Yang et al. 2022; Hao et al. 2023; Lei et al. 2024). Digitalization enhances energy efficiency,
decarbonizes production processes, and strengthens green innovation capacity (Luo et al. 2023;
Baneliené et al. 2023). In the EU context, empirical evidence further confirms that green innovation
integrated with digital transformation fosters economic competitiveness and accelerates sustainable
growth (Cioaca et al. 2020; Ahmed and Elfaki 2024).

Other studies point out that the environmental impact of digitalization differs depending on income
level, energy structure, and technological intensity. Balsalobre-Lorente et al. (2025) report that ICT and
green technologies improve environmental quality in advanced economies but remain limited in
emerging ones, and that the positive effect of digitalization on green innovation is strengthened by
institutional capacity and financial scale (He et al. 2024; Zhang and Bilawal Khaskheli 2025). In
addition, Chen and Xing (2025) show that digital trade promotes inclusive and green growth by
expanding markets, reducing pollution from conventional trade, and lowering entry barriers for small
and medium-sized enterprises-highlighting digital trade as a key driver of socially inclusive
sustainability.

A growing body of research emphasizes that ICT exports positively influence economic growth and
development indicators across OECD and G20 countries (Giirler 2023; Bocean 2025). ICT exports
increase value added by spreading knowledge-based services and enhancing competitiveness in the
digital economy. Furthermore, digital service trade is reported to promote inclusive growth and improve
SDG performance (Yeerken and Feng 2024; EI Awady et al. 2025). Yet the environmental consequences
of ICT exports remain underexplored, as most studies do not directly model the interaction between
carbon emissions and sustainability objectives-revealing an open research gap on the long-term effects
of digital openness on sustainable development.

The social dimensions of ICT and digitalization have also been investigated in terms of governance
and inequality. Digital transformation has been found to enhance social inclusiveness and income
equality, particularly by reducing gender disparities (Shah and Krishnan 2024). Similarly, when
financial inclusion and governance quality are jointly assessed, digital services are observed to boost
inclusive growth in disadvantaged regions (Safdar et al. 2024). However, some scholars argue that
digitalization may intensify social polarization due to high skill requirements and regional inequalities
(Kong et al. 2023). Therefore, ensuring that digital transformation supports sustainable development
requires strengthening regulatory frameworks, reducing infrastructure disparities, and promoting digital
skills and literacy (Zhang et al. 2025; Georgieva and Aleksandrova 2025).

This study addresses an important research gap and contributes to the existing literature. Although
the existing studies have made significant contributions to understanding the nexus between
digitalisation and sustainable development, several methodological and scope-related limitations
remain. First, most of the literature relies on conventional panel models that ignore structural breaks,
even though digital transformation has been strongly affected by events such as the 2001 crisis, the 2008
global recession, the 2015 technology wave, and the 2020 pandemic. Second, few studies examine the
impact of ICT exports on sustainable development; most focus solely on internet usage or digital access
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indicators. Third, comprehensive studies that integrate developed and emerging G20 economies while
accounting for cross-country heterogeneity are limited. Accordingly, this study provides three original
contributions to the literature:

(i) It integrates ICT exports, digitalisation, technological innovation, and economic growth into a
single framework to identify the multidimensional determinants of sustainable development.

(if) It tests long-run cointegration relationships under structural breaks and cross-sectional
heterogeneity using the Westerlund-Edgerton (2008) and Durbin-Hausman (2008) approaches.

(iii) It estimates robust long-run coefficients through CCEMG and AMG estimators and assesses
bidirectional causal relationships using the Dumitrescu-Hurlin causality test.

Through these features, the study offers one of the first panel-level empirical evidences on the effects
of the digitalisation-ICT export-growth nexus on sustainable development under structural breaks and
heterogeneous country structures.

3. Data, methodology and finding

The analysis was conducted for 14 G20 countries using annual data covering the period 2000-2021.
The variables and their sources are presented in Table 1.

Table 1. Definition and sources of variables

Variables Description Source / Indicator Code
SDG Index Score (excluding sub-components). Represents United Nations Sustainable
SDG countries’ performance toward achieving the Sustainable Development Solutions Network
Development Goals. (SDSN)

ICT service exports (BoP, current US$). Includes computer
LNICT and communications services (telecommunications, postal,

courier) and information services.

Patent applications, nonresidents. Refers to worldwide

World Bank (WDI)
BX.GSR.CCIS.CD

LNTECIN patent applications filed by nonresidents through the PCT World Bank (WDI)
. IPPAT NRES
procedure or national offices.
S : 0 .
Individuals using the Intemet (% of populat.lon). Mea.sur(.%s World Bank (WDI)
LNDUIT  the percentage of people using the Internet via any device in
ITNET.USER.ZS
the last three months.
LNGDP GDP per capita (constant 2015 USS$). Represents total World Bank (WDI)
income per person, adjusted for inflation to 2015 prices. NY.GDPPCAPKD

Note: All variables (except SDG) were transformed into their natural logarithmic form (LN) prior to estimation.

In the model, SDG was defined as the dependent variable, while LNICT, LNDUIT, LNTECIN, and
LNGDP served as explanatory variables. The basic panel regression model can be expressed as follows

in Equation (1):
SDG; = a; + BLLNICT;, + B,LNTECIN;, + BsLNDIJIT;; + BoLNGDP; + €, (1)

The descriptive statistics in Table 2 summarise the key properties of the variables used in the analysis.
Each variable—SDG, LNDUJIT, LNTECIN, LNICT, and LNGDP—contains 294 observations. The
mean value of SDG is 70.95, representing the widest range among the variables. Standard deviations
vary between 1 and 8, indicating a moderate level of variability across the series. Skewness values show
that SDG, LNDIJIT, and LNGDP are left-skewed, while LNTECIN and LNICT display more symmetric
distributions. Kurtosis values hover around 3, except for LNDIJIT, which exhibits a leptokurtic
distribution. The Jarque-Bera probabilities indicate that the normality assumption is rejected for most
variables. To maintain a balanced panel structure, the following 14 countries were included in the
analysis: Argentina (ARG), Brazil (BRA), Canada (CAN), China (CHN), France (FRA), Germany
(DEU), India (IND), Japan (JPN), Mexico (MEX), Russia (RUS), South Africa (ZAF), South Korea
(KOR), United Kingdom (GBR), and the United States (USA).
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Table 2. Descriptive statistics

Stats SDG LNICT LNTECIN LNDUJIT LNGDP
Mean 70.95080 22.13449 9.844611 3.662322 9.623483
Median 72.57642 22.25279 9.682614 4.121395 9.645209
Maximum 83.14347 25.32314 12.72588 4.569596 11.01942
Minimum 52.18668 17.37174 7.340836 -0.639546 6.628972
Std. Dev. 7.571910 1.687972 1.230361 1.030044 1.075594
Skewness -0.650223 -0.191806 0.261850 -1.613994 -0.793580
Kurtosis 2.569842 2.095772 2.671898 5.156504 2.965381
Jarque-Bera 22.98341 11.81863 4.678441 184.6126 30.87340
Probability 0.000010 0.002714 0.096403 0.000000 0.000000
Sum 20859.53 6507.539 2894.316 1076.723 2829.304
Sum Sq. Dev. 16798.81 834.8299 443.5399 310.8701 338.9724
Observations 294 294 294 294 294

3.1. Cross-sectional dependence

In panel data models, the presence of common shocks may lead to cross-sectional dependence in the
error terms. This problem can invalidate inferences based on the standard covariance matrix and reduce
the efficiency of estimators. The Lagrange Multiplier (LM) test developed by Breusch and Pagan (1980)
is widely used to examine the presence of correlation among cross-sectional units. The Cross-Section
Dependence (CD) test proposed by Pesaran (2004) is applicable to both balanced and unbalanced panels.
The later versions of this test—CDw and CDw+—introduced by Pesaran (2015) and Pesaran et al.
(2008)—provide more reliable results, particularly for panels with large N and small T. Greene (2018)
provides a detailed explanation of how the correlation coefficients of residuals are calculated in these
tests. Under this section, the Breusch-Pagan Lagrange Multiplier Test and the Pesaran CD Test are
introduced. The hypotheses for both tests are formulated as follows:

Hy: There is no cross-sectional correlation.
H;: There is cross-sectional correlation.

Breusch and Pagan (1980) developed an LM-type test to detect the existence of correlation among
cross-sectional units. The test can be applied to both balanced and unbalanced panels. The Breusch-
Pagan test statistic is defined as Equation (2):

N-1 N ) )
LM, = Z Z - Tybi; ~ Xnv-1)/2 (2)
i=1 j=i+1

In Equation (2), T;; = min(T;, T;); in a balanced panel, T;; = T. Here, p;; denotes the correlation
coefficient between the residuals of units i and j (Greene 2008). It is computed as Equation (3):

T
A~ Zt:1git€ft

pij = . T
(Sr, Qe

3)

The LM ,statistic follows an asymptotic chi-square distribution as T — oo with N fixed. However, it

is not suitable for large N panels. For this reason, a scaled version of the test statistic, shown in Equation
(4), is used:

1 N-1 N
SCLM, =—Z Z T 5. ~ N0 A
PN D) Ly Lajeinr? 0P~ NOD @
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Pesaran (2004) proposed the CD test to examine cross-sectional dependence in both balanced and
unbalanced panels. Under the null hypothesis of no dependence, the CD statistic is asymptotically
normally distributed. The test can be applied to both fixed- and random-effects models and is based on
the average of pairwise correlation coefficients calculated from individual regression residuals. The
Pesaran CD test statistic is given in Equation (5):

2 N-1 N R
D = j%zm Z}.zmx/fjpi,- ~ N(0,1) »

Monte Carlo simulations have shown that the Pesaran CD test performs well even when N > T.

Table 3. Cross-sectional dependence tests

Variables CD CDw CDw+ BP LM
42.057 124.480 33.613 1770.332

SDG sk ek ke sk sk
(0.000" (0.000"* (0.000"*" (0.000"*"

34.627 90.147 40.136 1307.143

LNICT kK kK kK kK
(0.000™ (0.000"*" (0.000™ (0.000™

6.104 56.368 41.793 851.452

LNTECIN kkok kk ok kkok kkok
(0.000™ (0.000"* (0.000™ (0.000™

40.847 117.395 62.945 1674.748

LNDIJIT koK ok koK koK
(0.000" (0.000"* (0.000"*" (0.000"*"
36.939 96.200 74.008 1388.807

LNGDP koK kK skokok koK
(0.000™" (0.000"*" (0.000™ (0.000™"

Note: CD, CDw, and CDw" tests were developed by Pesaran (2004), Pesaran (2015), and Pesaran et al. (2008), respectively. ***, ** and *
indicate significance at the 1%, 5%, and 10% levels.

All p-values in Table 3 are statistically significant at the 1% level, indicating the existence of cross-
sectional dependence among all variables in the panel. The probability values for all tests are below
0.05, confirming that cross-sectional dependence is present throughout the dataset.

3.2. Homogeneity test

In panel data analyses, the homogeneity test is applied to determine whether the parameters differ
across countries or units. This test examines whether the slope coefficients are identical among cross-
sectional units. The first study addressing this issue was conducted by Swamy (1970), who proposed the
following statistic to measure the variation of slope coefficients across units, as shown in Equation (6):

N
R o XIMGX: s
§= ) B Burey =5~ B Buree) ©

i=1

The approach of Swamy (1970) was later improved by Pesaran and Yamagata (2008) and introduced
as the Delta (A) homogeneity test. According to this test, the following panel regression model is
considered, as given in Equation (7):

Yie = a+ BiXi + &t 7

In Equation (7), B; represents the slope coefficient that may vary across individual units. Based on
this model, Pesaran and Yamagata (2008) defined the hypotheses of the homogeneity test as follows:

Hy: B; = B Slope coefficients are homogeneous.

Hq: B; # B Slope coefficients are heterogeneous.
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To test these hypotheses, Pesaran and Yamagata (2008) developed the following test statistics. For
large samples, the test statistic is defined in Equation (8):

-186 _
A= \/N(%Zk") ®)

For small samples, the adjusted version of the statistic is expressed as Equation (9):

N-1§—k

9
m) ©)

Zadj = \/N(

In Equation (9), N denotes the number of cross-sectional units, S represents the Swamy test statistic,
and k is the number of explanatory variables. Under the null hypothesis Hy, the statistic follows an
asymptotic standard normal distribution as (N,T) = oo and /N /T — 0. Pesaran and Yamagata (2008)
note that this test provides reliable results in both large and small samples due to its asymptotic
properties.

Table 4. Homogeneity test results

Test A Aadj
-4.914 —6.500
0.000"*" 0.000"*"

Note: *** ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Pesaran-Yamagata (2008)

The test examines whether the effects of LNICT, LNTECIN, LNDIJIT, and LNGDP on SDG differ
across countries. According to Table 4, the test statistics are significant at the 1% level (p < 0.01),
indicating that slope coefficients vary among G20 countries. This result implies that the model
parameters are heterogeneous across countries, reflecting differences in digitalisation, technology, ICT
development, and economic size among the G20 economies.

3.3. CIPS panel unit root test

The CIPS (Cross-sectionally Augmented IPS) test developed by Pesaran (2007) is a second-
generation unit root test that accounts for cross-sectional dependence in panel datasets. This method
extends the standard IPS test (Im et al. 2003) by including the cross-sectional means of the dependent
variable and its first difference in the ADF regression. By doing so, it controls for common shocks and
unobserved factor structures across countries. The basic model of the CIPS test is specified in Equation
(10) as follows:

Ay = a;+ biyieq + ¢y + diAy, + & (10)

. .1 . .
In Equation (10), y, = ﬁﬂvzlyit represents the cross-sectional mean, A denotes the difference

operator, and ¢&;; is the error term. The terms y;_; and Ay, control for the impact of common factors,
such as global shocks or synchronized trends across countries. The hypotheses of the test are defined as:

Hy: B; = 0 All series contain a unit root (non-stationary).
Hy: B; < 0 At least one series is stationary.

For each cross-sectional unit, an individual CADF (Cross-sectionally Augmented Dickey—Fuller)
statistic is estimated. The panel-level CIPS statistic is then obtained by averaging these individual CADF
statistics, as shown in Equation (11):

N

1
CIPS = NZ tADF (11)

i=1
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In Equation (11), t£4PF denotes the #-statistic derived from the individual ADF regression of unit i.
Pesaran (2007) demonstrated through Monte Carlo simulations that the CIPS test provides robust and
reliable results even in panels with small N and T. Therefore, the CIPS test is widely preferred for testing
the stationarity of variables under the presence of cross-sectional dependence.

Table 5. Panel unit root test results

Variables CIPS 1(0) CIPS I(1)
SDG -1.981 -3.676™"
LNICT -2.029 22,617
LNTECIN -1.934 -3.837"
LNDUIT -1.916 -3.604™
LNGDP -1.609 -2.638"""

Note: *** ** and * denote significance at the 1%, 5%, and 10% levels, respectively.

As shown in Table 5, the results of the CIPS test indicate that all variables are integrated of order
one, I(1). This finding suggests that the variables become stationary after first differencing, confirming
their non-stationarity in levels.

3.4. Panel cointegration test with structural breaks

The Westerlund-Edgerton (2008) and Durbin-Hausman (2008) approaches propose a Lagrange
Multiplier (LM) based method to test the existence of long-run cointegration relationships in panel data
models.

This test belongs to the class of second-generation panel cointegration tests as it accounts for both
cross-sectional dependence and possible serial correlation among series. In addition, it applies the
bootstrap resampling technique to reduce bias and improve reliability in small samples. The basic model
is expressed in Equation (12) as follows:

t
Vie = @ + Xiefi + Zigs Zip = Uy + Wi, Mg = Z nij (12)
=

In Equation (12), y;; denotes the dependent variable, x;; represents the explanatory variables, z;; is
the error term, and y;; stands for the stochastic trend component. The hypotheses of the test are defined
as follows:

Hy: 6# = 0 Cointegration exists.
Hy:0? > 0 No cointegration exists.

This approach is an extension of the LM-based panel cointegration test initially developed by
McCoskey and Kao (1998). The Durbin-Hausman (2008) test examines the null hypothesis of
cointegration and employs bootstrap critical values to obtain accurate results in small samples.

Westerlund and Edgerton (2008) further extended this framework by incorporating structural breaks
and common factor dependence. The model allowing for breaks in both intercept and slope coefficients

is given in Equation (13):
Yie = &; + 03t + 8;Dy + xifi + (DieXi)'Vi + Zies zip = LiFp + vy (13)

In Equation (13), D;; represents the structural break dummy, F; denotes common factors, and A; are
factor loadings. The model thus allows for country-specific breakpoints that may occur at different times
across cross-sections. The hypotheses of the Westerlund-Edgerton (2008) test are formulated as:
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Hy: ¢; = 0 No Cointegration.
Hy: ¢; < 0 Cointegration exists.

The test statistics 7, and ¢,, follow a standard normal distribution, adjusted for structural breaks and
common factors. Consequently, the test remains valid even when the timing of the breaks is unknown.
The Westerlund-Edgerton (2008) approach improves upon the Westerlund (2005) test in two major
respects:

(i) it does not require prior knowledge of break dates, and
(i) its asymptotic distribution is independent of nuisance parameters, allowing for the use of fixed
critical values.

Applying both tests together enables a comprehensive assessment of cointegration relationships
under heterogeneity and structural breaks. While the Durbin-Hausman (2008) test investigates whether
a homogeneous cointegration relationship exists across the panel, the Westerlund-Edgerton (2008) test
evaluates whether this relationship persists in the presence of structural breaks.

Table 6. Panel cointegration test results

Durbin-Hausman (2008)

dh, dh,
1.808™ -2.272
(0,035) (0.988)
Westerlund-Edgerton (2008) with Structural Breaks
Tn On
-2.992"* -3.349"™"
0.001 0.000

Note: *** ** and * denote significance at the 1%, 5%, and 10% levels, respectively.

As shown in Table 6, the group mean statistic of the Durbin-Hausman (2008) test (dhy= 1.808; p =
0.035) is significant at the 5% level, whereas the pooled statistic (dh,= -2.272; p = 0.988) is not. This
implies that a homogeneous cointegration relationship does not hold across the entire panel, but
heterogeneous cointegration relationships may exist in some countries. For the Westerlund-Edgerton
(2008) test with structural breaks, both 7,, (—2.992; p = 0.001) and ¢, (-3.349; p = 0.000) are significant
at the 1% level, indicating a long-run cointegration relationship among the variables despite the presence
of structural breaks. The results confirm that the cointegration relationship remains valid even after
accounting for country heterogeneity and structural shifts. Estimated break dates for each country are
presented in Table 7.

Table 7. Estimated break dates

Country Break Point Break Date Country Break Point Break Date
ARG 2 ~2001 JPN 16 <2015
BRA 17 ~2016 MEX 18 ~2017
CAN 17 ~2016 RUS 15 ~2014
CHN 3 ~2002 ZAF 3 ~2002
FRA 7 ~2006 KOR 17 ~2016
DEU 4 ~2003 GBR 6 = 2005
IND 9 ~2008 USA 13 =2012

As illustrated in Table 7, the findings confirm the existence of a long-run cointegration relationship
among the variables, which remains valid despite the presence of structural breaks. Most estimated break
dates cluster between 2001-2008 and 2015-2017, periods corresponding to global financial crises and
waves of digital transformation across G20 economies.
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3.5. CCEMG and AMG long-run estimation models

In panel data analyses, second-generation estimators that account for cross-sectional dependence and
heterogeneity enable more reliable estimation of long-run coefficients. In this context, two different
second-generation panel estimators are employed in the study: CCEMG and AMG.

The CCEMG estimator, developed by Pesaran (2006), addresses potential cross-sectional
dependence caused by unobserved common factors and global shocks by including a vector of common
effects (f;) and their loadings (4;) into the model. For each cross-sectional unit, the model is expressed
as Equation (14):

Ay =6+ diy; + € (14)

In Equation (14), d; represents observed common effects, while f; (not explicitly shown) denotes
unobserved common effects. The CCEMG method calculates the overall panel coefficient as the average
of the coefficients obtained for each cross-section, as shown in Equation (15):

N
1 !
Yeceme = NZ Yi (15)
i=

This approach preserves individual heterogeneity while mitigating the impact of cross-sectional
dependence. It produces consistent results even in small samples by reducing the effects of global shocks
such as financial crises or technological disruptions (Pesaran 2006; Pesaran and Tosetti 2011).

The AMG estimator, introduced by Eberhardt and Bond (2009), similarly accounts for cross-sectional
dependence and heterogeneity when estimating long-run coefficients across the panel. It extends the
CCE-MG framework by incorporating a common dynamic process through a "time-dummy trend" that
captures unobserved common components. The AMG estimator proposed by Eberhardt and Teal (2010)

is expressed as Equation (16):
1 N
A = B+ ¥iGie + Ao + i Viwe =5 D Wi (16)
i=1

In Equation (16), G;; denotes the vector of explanatory variables, and A, represents the common time
effect across all units. This estimator provides robust long-run relationships, particularly for panels
affected by common trends or structural changes (Eberhardt and Bond 2009; Eberhardt and Teal 2010).

Table 8. Long-Run estimation results

CCEMG AMG
Variables Coef. SE p-value Coef. SE p-value
LNICT -0.546 0.387 0.158 -0.739" 0.397 0.063
LNTECIN 0.410 0.497 0.409 0.373 0.647 0.564
LNDUIT -0.222 0.478 0.642 -0.364" 0.166 0.028
LNGDP -1.151 1.744 0.509 -2.584™" 0.378 0.000

Note: *** ** and * denote significance at the 1%, 5%, and 10% levels, respectively.

According to the long-run estimation results presented in Table 8, the coefficients of LNICT and
LNDUIT are negative, LNTECIN is positive, and LNGDP is negative in both models. While none of
the variables are statistically significant in the CCEMG model, digitalisation (DIJIT) and economic
growth (GDP) are statistically significant in the AMG model. Therefore, in the long run, digitalisation
and economic size are identified as the main determinants significantly affecting sustainable
development (SDG) among G20 countries, with both exhibiting negative long-run effects.

141



H. Kog Journal of Sustainable Digital Futures 2025 1(2) 132-148

3.6. Panel causality test

The panel causality test developed by Dumitrescu and Hurlin (2012) allows for the analysis of the
direction of causality between variables under a heterogeneous panel structure. This test is an extension
of the classical Granger causality approach to panel data and can account for both cross-sectional
dependence and heterogeneity across units. It is applicable in cases where either T > N (time dimension
greater than cross-section) or N > T, and it remains valid for unbalanced panels as well (Gholami,
2006). The baseline model of the Dumitrescu-Hurlin test is expressed in Equation (17):

K K
K K
Vi=a;+ Z Vi( )Yi,t—k + Z ﬂi( )Xi,t—k + & (17)
=1 =1

In Equation (17),i = 1, ..., N denotes the cross-sectional units, t = 1, ..., T denotes time, K is the lag
length, and a; represents the individual fixed effect. The model assumes a common lag order K for all
units in the panel. The hypotheses are formulated as follows:

Hy: ﬁi(k) = 0 No causality exists.
Hi: Bl.(k) # 0 At least one unit exhibits causality.

The panel-level test statistic is calculated by averaging the individual Wald statistics across all cross-
sections. Dumitrescu and Hurlin (2012) define two statistics, as shown in Equations (18) and Equation

(19):

N
1
Wyr = NZ Wir (18)
i=

NWyr =N YY EWir) now
5 YW Rie EWir) we o )

N
N-L Y. _ Var(Wir)

When the absolute value of Zy exceeds the critical value, the null hypothesis H, is rejected,
indicating the existence of a causal relationship between the variables.

Table 9. Dumitrescu-Hurlin panel causality tests

Null Hypothesis: W-Stat. Zbar-Stat. Prob.
LNICT #> SDG 4.47586 2.90368 0.0037
SDG #> LNICT 5.11365 3.76806 0.0002
LNTECIN #> SDG 2.76319 0.58256 0.5602
SDG #> LNTECIN 2.59226 0.35092 0.7257
LNDUJIT #> SDG 4.97793 3.58412 0.0003
SDG # LNDUJIT 6.94289 6.24716 0.0000
LNGDP #> SDG 5.92445 4.86690 0.0000
SDG #> LNGDP 3.10728 1.04890 0.2942

Note: The symbolic expression "#>" means that variable X does not cause variable Y. Lags = 2.

According to the results of the Dumitrescu-Hurlin (2012) panel causality test presented in Table 9,
bidirectional causality is observed between LNICT and SDG, as well as between LNDIJIT and SDG.
Additionally, a unidirectional causality running from LNGDP to SDG is identified. No statistically
significant causal relationships are found among the other variable pairs.
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4. Discussion

The empirical findings of this study reveal the long-run effects of digitalisation, information and
communication technologies (ICT), technological innovation, and economic growth on sustainable
development. The results are interpreted based on the long-run estimations from the CCEMG and AMG
models and the causality relationships identified by the Dumitrescu-Hurlin panel causality test.

According to the long-run estimation results (Table 8), the coefficients of LNICT and LNDIJIT are
negative, LNTECIN is positive, and LNGDP is negative in both models. In the AMG model,
digitalisation (LNDIJIT) and economic growth (LNGDP) are statistically significant, indicating that
digitalisation and economic size are the key long-term determinants of sustainable development. These
findings are consistent with Bocean (2025) and Fernandez-Portillo et al. (2019), who reported that
digitalisation enhances sustainable development through improved economic performance in the
European Union. However, the negative and statistically insignificant coefficient of ICT exports
partially diverges from Zhao et al. (2022) and Giirler (2023). This discrepancy may arise from the
heterogeneous nature of ICT impacts across G20 countries and the differing levels of technological
openness among them.

The significant negative coefficient of LNDIJIT aligns with Kong et al. (2023), who emphasized that
digitalisation, while promoting economic growth, can exacerbate income inequality. This result implies
that digital transformation does not always produce uniformly positive outcomes and may, in highly
digitalised economies, negatively affect social sustainability by deepening inequality. Furthermore, the
results of the Westerlund-Edgerton (2008) panel cointegration test with structural breaks (Table 6)
confirm the existence of a long-run equilibrium relationship among the series despite structural shifts.
This finding supports the conclusions of Balsalobre-Lorente et al. (2025) and Yang et al. (2022), both of
which highlight that digitalisation and technological innovation reinforce the long-term balance between
environmental sustainability and economic growth.

The results of the Dumitrescu-Hurlin panel causality test (Table 9) reveal bidirectional causality
between LNICT < SDG and LNDUIT « SDG, and a unidirectional causality running from LNGDP
— SDG. These findings indicate a mutual and reinforcing relationship between digitalisation, ICT
activities, and sustainable development, consistent with He et al. (2024) and Yeerken and Feng (2024).
By contrast, no causality is observed for technological innovation (LNTECIN), suggesting that patent-
based indicators may have limited capacity to explain variations in sustainable development outcomes.

Overall, the findings underscore the significant role of digitalisation and economic growth in driving
sustainable development, while the effects of ICT exports and technological innovation vary depending
on country heterogeneity and structural breaks. This pattern supports the literature on the dual nature of
digital transformation, which can act as both an enabler and a disruptor of sustainability (Alraja et al.
2023; Georgieva and Aleksandrova 2025). For G20 economies, ensuring that digitalisation contributes
positively to sustainable development requires not only investments in digital infrastructure but also the
strengthening of institutional capacity and the adoption of inclusive policy frameworks.

The Sustainable Development Goals (SDG) index has a composite structure that includes economic,
social, and environmental dimensions. Because of this, the overall relationship between digitalisation
and sustainable development may hide different effects across these dimensions. Digitalisation can
support economic and social sustainability by increasing efficiency, innovation, and inclusion. However,
its environmental effect is mixed. Higher energy demand, data storage, and electronic waste can weaken
the positive outcomes. Future studies should separate the SDG index into subdimensions. This would
help identify whether digitalisation mainly improves economic or social goals, or whether it also
supports environmental sustainability.

The insignificant effect of ICT exports also needs more attention. This result may reflect major
differences in digital trade capacity, innovation ecosystems, and infrastructure among G20 economies.
In some countries, ICT exports create knowledge spillovers and improve competitiveness. In others,
weak institutions or low innovation levels limit these gains. ICT exports may also have indirect effects
through human capital or technology transfer, which aggregate indicators cannot fully capture. Future
research could include new variables, such as digital intensity, e-commerce penetration, or digital service
trade. These indicators would give a clearer and more balanced picture of how digital openness interacts
with sustainability outcomes.
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In short, the results highlight the need for a more detailed approach to measure the effects of
digitalisation. Understanding which sustainability dimensions benefit the most will help policymakers
design more focused and inclusive digital strategies. The following section presents the policy
implications and future research directions derived from these findings.

5. Conclusion

This study examined the effects of ICT exports, digitalisation, technological innovation, and
economic growth on sustainable development in G20 countries for the period 2000-2021. Second-
generation panel data methods were employed by considering cross-sectional dependence and structural
breaks. The findings indicate the presence of heterogeneity among countries and suggest that the
variables are sensitive to common shocks. The results confirm the existence of a long-run cointegration
relationship among the variables.

The Westerlund-Edgerton (2008) panel cointegration test with structural breaks shows that, despite
structural changes, the variables move together in the long term. This implies that sustainable
development maintains a long-run equilibrium relationship with the dynamics of digital transformation,
technology, and economic growth. According to the long-run estimation results, digitalisation and
economic size emerge as significant determinants of sustainable development. The negative coefficient
of digitalisation suggests that, in some countries, the digital transformation has not produced the
expected positive effects on sustainability. This may result from differences in technological
advancement levels among G20 economies. The positive influence of economic growth highlights that
achieving sustainable development goals is closely linked to financial capacity.

The causality analysis reveals bidirectional relationships between ICT, digitalisation, and sustainable
development, suggesting a mutually reinforcing interaction. This means that digital transformation
supports sustainable development, while sustainability objectives, in turn, stimulate digitalisation. The
unidirectional causality from economic growth to sustainable development indicates that growth serves
as a prerequisite for sustainable progress. Overall, the results underline that digitalisation and economic
growth are key drivers of sustainable development, while the effects of ICT exports and technological
innovation vary depending on country-specific structural characteristics. This finding implies that digital
transformation policies cannot be explained by a single model. Each country should design strategies
consistent with its own technological capacity and institutional framework.

6. Policy implications

The findings of this study provide several important insights for policymakers seeking to harmonise
digital transformation with sustainable development objectives in G20 economies. The results highlight
that while digitalisation and economic growth are key drivers of sustainable development, their effects
differ across countries due to technological capacity, institutional quality, and environmental policy
frameworks. Therefore, digital transformation strategies must be aligned with long-term sustainability
goals through multidimensional policy coordination.

First, governments should pursue inclusive digital infrastructure development to ensure that the
benefits of digitalisation reach all regions and social groups. Expanding broadband access, strengthening
digital literacy programs, and closing the digital divide are crucial to achieving both social and economic
sustainability. Second, technological innovation policies must explicitly incorporate environmental and
social dimensions. Promoting green technologies, encouraging energy-efficient production systems, and
linking patent incentives to sustainability-oriented outcomes can significantly improve resource
efficiency and reduce environmental externalities. Third, to enhance the contribution of ICT to
sustainable development, high value-added digital services should be prioritised. The digital economy
must be integrated not only into production but also into education, governance, and public service
delivery. ICT should be viewed as a transformative tool that fosters inclusive, resilient, and
environmentally responsible growth. Fourth, economic growth strategies should be designed within an
environmentally sensitive framework that promotes renewable energy investments, supports circular
economy practices, and ensures responsible consumption. In this context, aligning growth targets with
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sustainability principles will help reduce the trade-offs between digital expansion and environmental
quality.

Finally, the effectiveness of digitalisation depends on strong institutional and ethical frameworks.
Policymakers must ensure transparent data governance, cybersecurity, and ethical Al use. Strengthening
institutional capacity, promoting accountability, and adopting inclusive digital regulations are essential
to sustaining the long-term balance between digital progress and social welfare.

7. Limitations and directions for future research

Although this study contributes to the understanding of the nexus between digitalisation and
sustainable development, several limitations provide opportunities for further research:

o Composite Nature of the SDG Index: The SDG index aggregates economic, social, and
environmental dimensions. Future studies could decompose it to identify which specific sustainability
pillars are most affected by digitalisation and ICT exports.

o Measurement of Digitalisation: ICT exports and patent-based indicators may not fully capture the
multidimensional aspects of digital transformation. Alternative measures such as digital intensity
indices, digital service trade, or e-commerce activity could be incorporated in future models.

e Cross-Country Heterogeneity: This study uses a panel of G20 economies; however, country-level
variations remain important. Comparative or cluster analyses could reveal how institutional capacity
and policy environments shape the digitalisation—sustainability relationship.

e Dynamic and Nonlinear Interactions: Future studies might explore nonlinear or regime-switching
approaches to capture asymmetric and time-varying effects of digitalisation on sustainability under
different policy or technological regimes.

e Policy Implementation and Governance Aspects: Further empirical work could examine how
governance quality, regulatory efficiency, and international cooperation influence the success of digital
transformation policies in advancing sustainable development.
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ABSTRACT

This study analyzes the connectedness dynamics between artificial intelligence
(Al)-themed indices and the global environmental, social, and governance (ESG)
index within a nonlinear and regime-sensitive framework. Using daily data for the
2018-2025 period, the Quantile-on-Quantile Connectedness (QQC) approach is
employed to examine how information transmission between Al and ESG markets
varies across different distributional states. The empirical findings indicate that
under adverse market regimes, Al indices predominantly act as receivers of
information, while the ESG index assumes a transmitter role. In contrast, during
periods associated with more favorable market conditions, the direction of
information flow reverses, and Al indices tend to function as net transmitters
influencing ESG performance. These results reveal that the connectedness
between Al and ESG indices is highly nonlinear, asymmetric, and strongly
dependent on market regimes rather than being stable over time. Overall, the
findings provide relevant insights for investors, policymakers, and financial
regulators by highlighting how Al and sustainability-oriented markets alternately
shape information flows under stress and non-stress conditions, thereby offering
a regime-aware framework for portfolio diversification, risk monitoring, and
financial stability assessment.

1. Introduction

In recent years, financial markets have undergone a profound transformation driven by technology-

centered innovations and the growing prominence of sustainability-oriented investments. On one hand,
investment strategies grounded in ESG criteria have evolved from being merely ethical preferences to
becoming critical components of long-term return generation and risk management (Kraussl 2024;
Lunawat 2025). On the other hand, Al transformations are reshaping capital markets and generating a
structural shift within the financial sector. As Al continues to define the trajectory of technological
development and innovation, investor interest in firms that lead advancements in this domain has
intensified (Poutachidou and Koulis 2025). Particularly since late 2022, the rapid expansion of
generative Al has substantially heightened investors’ attention toward Al-based firms and Al-themed
portfolios (Qin 2025). This surge has made the interaction between Al-based financial indicators and
sustainability-oriented indices increasingly visible in terms of investor behavior and overall market
dynamics.

Received 21 November 2025; Received in revised from 21 December 2025; Accepted 28 December 2025
Auvailable online 30 December 2025


https://jsdf.org.tr/index.jsp
https://jsdf.org.tr/
https://orcid.org/0000-0002-3173-0247

H. Yildirim Journal of Sustainable Digital Futures 2025 1(2) 149-164

One of the primary driving forces behind this transformation in financial markets is digital
innovation. Digital innovation is defined as the effective integration of digital technologies into business
processes and the development of novel digital products (Nambisan et al. 2017). With its strong potential
to promote sustainable business practices, digital innovation enhances operational efficiency, helps
optimize resource utilization, enables remote-work flexibility, and enhances transparency, which in turn
supports better environmental performance, stronger social responsibility, and more effective
governance practices. Moreover, by reshaping how firms interact with their external environment, it
influences stakeholder relations and competitive dynamics (Tian et al. 2022). This micro-level
transformation gradually generates macro-level reflections in financial markets, and this observation
aligns with studies demonstrating the impact of digital transformation on corporate environmental
performance (Wang et al. 2025). In this regard, digital innovation can indirectly influence both the
direction and the intensity of information flows between technology-based investment indices and
sustainability indices.

Digital transformation also plays a critical role in improving environmental performance. Advanced
digital technologies enable firms to monitor and manage environmental indicators—such as energy
consumption and emissions—in real time, thereby reducing environmental impacts by increasing
resource-use efficiency within production processes (Nguyen et al. 2020). Moreover, digitalization
facilitates the adoption and diffusion of green technological innovations, encouraging environmentally
friendly production practices (Chen and Xie 2022). The information transparency and external oversight
made possible by digital technologies also contribute to enhanced corporate environmental
responsibility, prompting firms to adopt more sustainable and accountable strategies (Hao et al. 2023;
He et al. 2022). Therefore, the positive influence of digital innovation on ESG performance is not
confined solely to the firm level; it can also manifest in the interaction dynamics between indices,
reflecting the broader implications of technological transformation in financial markets.

Within this framework, Al, as a major pillar of digital innovation, has become an important area of
application that can meaningfully affect ESG performance. Al applications can directly affect multiple
dimensions of ESG performance, ranging from optimizing energy consumption and waste management
to strengthening diversity and inclusion through unbiased decision-making processes (Vinuesa et al.
2020). Therefore, the interaction between generative Al and sustainability should be viewed not merely
as a technological innovation but also as a strategic dynamic shaping the future of financial markets.
The reflections of Al-driven technological progress in financial markets can be observed concretely
through Al indices, and the interaction between these indices and ESG indicators serves as a critical
signal for understanding the capacity of digital transformation to create sustainable value in capital
markets.

On the other hand, during the same period, the concept of sustainability has also risen to a central
position among firms’ strategic priorities. This trend is driven by the increasing emphasis placed by
international institutions—such as the United Nations and the European Union—on not only
environmental responsibility but also social welfare and inclusive development (Farahani et al. 2017).
Consequently, in a period when technological transformation gains momentum on one side and
sustainability-oriented policies strengthens on the other, a new interaction domain emerges at the
intersection of these two areas. At this point, the connectedness between Al and ESG indicators becomes
crucial for identifying investor preferences and achieving portfolio diversification. Thus, the AI-ESG
nexus constitutes a relatively new and increasingly specific field within the literature. In sum, examining
the impact of digital transformation—and Al technologies as one of its core components—on
sustainability is also essential for fostering the sustainable transformation of the economy and society
(Wang et al. 2025a).

The interaction between Al-based investment instruments and ESG-oriented financial indices is
primarily shaped through information transmission processes and investor sentiment channels. While
innovation-driven Al assets tend to respond rapidly to changes in technological expectations and
information flows, ESG-oriented assets are more closely associated with policy developments and long-
term risk assessments, thereby exhibiting relatively slower adjustment dynamics (Abdelkader and Si
Mohammed 2025). Moreover, the fact that financial asset prices are determined not only by fundamental
factors but also by shifts in expectations and risk perceptions that vary across market conditions renders
investor sentiment a key mechanism governing the direction and intensity of information spillovers
between these two market segments (Barberis et al. 1998; Baker and Wurgler 2006). In this context, the
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connectedness between Al and ESG indices is highly likely to display a time-varying, asymmetric, and
regime-sensitive structure.

A segment of the existing literature examines the performance and behavior of Al-based investment
instruments (Poutachidou and Koulis 2025; Qin 2025), while another segment investigates the role of
Al tools in financial behavior within the ESG framework (Abdalmuttaleb et al. 2022). Lim (2024), in
his study analyzing research domains related to ESG-AI trends in the finance literature, identifies that
the strongest focus lies in the determination of trading and investment areas. Systematic research on
ESG investments, on the other hand, generally concentrates on themes such as risk—return relationships,
portfolio diversification, and corporate governance (Kraussl et al. 2024). This pattern indicates the need
for a regime-sensitive analytical framework that can reveal how the AI-ESG interaction evolves,
particularly under extreme market conditions. In this respect, the direction, magnitude, and asymmetric
structure of information flow between Al-based indices and ESG indices emerge as a relatively
unexplored area in the contemporary literature.

The primary objective of this study is to examine the connectedness among Al indices, specifically
the Nasdaq CTA Artificial Intelligence Index (Al_NASDAQ) and the Global X Artificial Intelligence
& Technology ETF (AIQ) and the MSCI World ESG Leaders Index, which is employed as the
sustainability indicator, using daily data from the period 1 November 2018 to 27 October 2025. The
analysis utilizes the QQC approach developed by Gabauer and Stenfors (2024). Rather than focusing
solely on average relationships, the study aims to reveal in detail how different market regimes (e.g.,
stress conditions such as the COVID-19 period) shape shock transmission between the two markets at
various quantile levels. In doing so, the nonlinear, asymmetric, and regime-dependent structure of the
interaction between Al markets and the ESG index representing global sustainability performance is
comprehensively evaluated. The resulting framework seeks to enhance the understanding of the dynamic
relationship between technology-based and sustainability-based financial markets.

This study fills an important gap in the literature examining the financial interaction between Al
indices and the ESG index, as most existing research focuses on the impact of Al on ESG performance
at the firm level, while the relationship between market indices is addressed only to a limited extent and
predominantly through linear methods. By employing the QQC approach, this study offers a novel
contribution to the literature through its quantile-based, regime-dependent, and nonlinear examination
of this relationship. The QQC methodology enables a detailed exploration of how Al and ESG markets
interact during periods of low, normal, and high volatility, thereby making visible the tail connectedness
structures, asymmetries, and crisis-specific dynamics that conventional methods typically overlook.
This distinctive analytical framework allows investors to conduct more accurate risk assessments for
portfolio diversification strategies, enables policymakers to design coordinated technology and
sustainability policies, and helps firms better evaluate the indirect financial implications of Al
investments on sustainability performance. In sum, by analyzing the interaction between Al and ESG
markets through a multidimensional perspective, this study provides a substantial and innovative
contribution to both the theoretical and empirical literature.

Accordingly, the subsequent sections of the study are structured as follows. Section 2 provides a
comprehensive review of the existing literature addressing the relationship between Al and ESG. Section
3 presents the methodological framework of the research and introduces the data set, variables, and
empirical approach in detail. Section 4 reports the findings of the quantile-level connectedness analyses
obtained through the implementation of the QQC approach. In Section 5, the findings are discussed from
a multidimensional and holistic perspective. Section 6 develops policy implications, and finally, Section
7 presents the limitations of the study and offers directions for future research.

2. Literature review

Al, which has become one of the most prominent concepts of the modern world and whose
significance, applicability, and implications are frequently debated, has evolved into a transformative
innovation shaping numerous sectors and structures (Vinuesa et al. 2020). For instance, Acemoglu and
Restrepo (2018) examine AI’s two opposing effects—namely the displacement effect and the
productivity effect—on global productivity; Bolukbasi et al. (2016) focus on issues of gender equality
and inclusion; Norouzzadeh et al. (2018) explore its impacts on ecological systems and the environment;
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Wang et al. (2025a) and Nishant et al. (2020) investigate implications for sustainability; and Vinuesa et
al. (2020) assess its direct influence on the Sustainable Development Goals. These studies consistently
demonstrate that Al has substantial and wide-ranging effects. Such broad impacts of Al become even
more visible in finance, which is among the sectors experiencing the most intensive digitalization.

Digitalization is one of the domains with which the financial sector interacts most intensively. In
particular, with the growing influence of the millennial generation in both the business world and
consumer markets, technologies such as cloud services, open-source software, Al, and mobile devices
have rapidly proliferated (Hill 2018). With the growing reliance on digital financial services such as
mobile payments, access to the financial system has widened considerably, helping to improve inclusion
among low-income populations (Lee et al. 2021; Siddiqui and Siddiqui 2020). It is widely acknowledged
that the financial sector—being one of the industry’s most closely aligned with technological
development—is among the areas in which Al is expected to exert the strongest impact. Indeed, the
effects of Al in finance have been the subject of extensive research, and continue to attract substantial
academic attention (Bredt 2019; Biallas and O'Neill 2020; Milana and Ashta 2021). The principal
functions of Al in the financial sector include enhancing the quality of products and services through
advanced analytical insights, and enabling more efficient applications such as fraud detection, anti—
money laundering (Bredt 2019), and credit rating (Plawiak et al. 2019). Additionally, many studies
examining Al applications in accounting and finance have focused on portfolio optimization, risk
management, and asset pricing, further underscoring the sector’s extensive integration with Al-driven
tools and processes (Ertenlice and Kalayci 2018).

One of the key reflections of this transformation in financial markets is the emergence of thematic
Al indices and Al-focused ETFs. Consequently, these instruments have increasingly become the subject
of academic investigation. For example, Poutachidou and Koulis (2025) examine 15 Al-focused ETFs
in the United States and show that the performance of these funds is largely driven by asset selection,
while investment style and the degree of active—passive management differ substantially across funds.
In another study, Belhouichet et al. (2025) employ a QVAR-based tail connectedness analysis and
demonstrate that Al and robotics ETFs act as net transmitters of market shocks—together with the S&P
500—and that this effect is particularly concentrated under extreme market conditions. According to
their findings, Al-based ETFs are becoming increasingly influential within the financial system, both in
terms of investment-style characteristics and risk-spillover mechanisms.

ESG is a form of investment that creates long-term social, environmental, and economic value
(lannone et al. 2025). In the literature on the financial performance of ESG indices—particularly during
periods of structural disruptions such as wars and pandemics (Broadstock et al. 2021; De Renzis et al.
2024; Naffa and Dudas 2024), it is frequently argued that firms with high ESG scores exhibit lower risk,
more stable cash flows, and stronger long-term performance (Giese and Shah 2025). For this reason,
ESG stocks tend to be less prone to investor withdrawal during crisis periods, especially among value-
oriented investors (Lashkaripour 2023).

Evidence indicating that Al strengthens sustainability performance has become increasingly clear in
the literature. Liu et al. (2025) show that Al adoption generally enhances the environmental, social, and
governance dimensions of Chinese firms, while Yu et al. (2025) similarly demonstrate that firms’ Al
capabilities significantly improve ESG performance through more efficient resource allocation and
supply chain optimization. Consistent with these findings, the literature emphasizes that Al enhances
ESG performance through multiple mechanisms, including energy management (Coulson et al. 1987),
emission reduction (Ding et al. 2024), resource optimization (Almansour 2023), strengthening corporate
environmental reputation (Dauvergne 2022), improving stakeholder (customer) experiences (Ameen et
al. 2021), and supporting governance processes (Reddy et al. 2020).

Although the literature examining the impact of Al on ESG performance—predominantly at the firm
level—has expanded rapidly, empirical evidence on how Al-ESG interactions unfold at the market level
remains limited. Most existing studies rely on linear and mean-based methodologies, which are
insufficient to capture regime-specific, asymmetric, and tail-sensitive information transmission
mechanisms that become particularly salient during periods of heightened market stress. Against this
background, this study focuses on addressing this gap by examining the interaction between Al-themed
financial indices and ESG-oriented indices within a market-level, regime-sensitive, and nonlinear
analytical framework.
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3. Data and methodology

Classical econometric methods predominantly focus on conditional mean effects and therefore tend
to overlook asymmetric and directional information transmissions that emerge under tail market
conditions (Diebold and Yilmaz 2014; Engle et al. 2020). For this reason, quantile-based approaches
have gained increasing prominence in the finance literature and have become widely adopted in
empirical studies (Cech and Barunik 2017; Armah and Amewu 2024; Hadad et al. 2024).

In recent years, notable methodological advances have been made toward empirically capturing the
complex relationships inherent in financial systems. In particular, quantile connectedness models have
enabled the analysis of information spillovers across variables not only around the mean but also at
different quantile levels. Building on these advancements, the QQC approach introduced by Gabauer
and Stenfors (2024) allows the transmission mechanism between quantiles to be identified in terms of
both direction and magnitude, rather than restricting the analysis to a single quantile.

3.1. Data set

In this study, the connectedness between Al-related financial assets and ESG-oriented investment
indices is examined at the global level using daily data covering the period from 1 November 2018 to
27 October 2025. Al-related market activity is represented by two distinct Al-based investment
indicators: the Nasdaq CTA Artificial Intelligence Index (Al_NASDAQ), which tracks the performance
of companies engaged in the development and application of Al technologies across the technology,
industrial, healthcare, and other economic sectors; and the Global X Artificial Intelligence &
Technology ETF (AIQ), which encompasses firms expected to benefit from the development and
utilization of Al-based products and services, as well as hardware providers that enable the use of Al in
big data analytics. Data for both indices are obtained from www.investing.com.

Sustainability-oriented market dynamics are captured using the MSCI World ESG Leaders Index, a
global benchmark composed of companies exhibiting high ESG performance relative to their sector
peers. The index is constructed based on MSCI ESG ratings by selecting firms with superior ESG scores
within each sector while maintaining market-capitalization weighting. This approach allows the index
to represent a diversified global equity portfolio of companies with relatively strong ESG characteristics
without deviating from a market-based index structure. Data for the index are obtained from
WWW.msci.com.

To transform the time series to a stationary form and to allow for the interpretation of percentage
changes, logarithmic transformations are applied. This transformation is particularly essential for
detecting the propagation of nonlinear shocks. The logarithmic transformation is defined as in Equation

(1):
AlnX, = In(X) — In(X,_,) 1)

The logarithmic difference transformation is applied not only to stabilize the variance of the
Al_NASDAQ and AIQ series used in the analysis but also to allow the rates of change to be interpreted
in percentage terms. In Figure 1, the upper panels display the returns of Al_NASDAQ and AIQ, while
the lower panel presents the level values of the ESG index. An examination of the upper panels
corresponding to Al reveals that both indices exhibit abrupt spikes, particularly during the 2020 COVID-
19 period and after late 2023. These spikes indicate that the fluctuations observed during these periods
are highly sensitive to shifts in investor sentiment and changes in market dynamics. In particular, the
high-frequency volatility observed in the Al_NASDAQ index suggests a heightened sensitivity to
systemic risk.

On the other hand, when the trend of the ESG index is examined, it shows an upward trajectory in
the long run, albeit with short-term fluctuations. These fluctuations can be interpreted as evidence that
ESG is influenced by global macroeconomic dynamics.

When Figure 1 is evaluated as a whole, it becomes apparent that the dynamic behavior of Al index
returns and the ESG index varies across different sub-periods, particularly during episodes of heightened
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market stress. While Al index returns display pronounced variability and volatility clustering, the ESG
index follows smoother trend dynamics accompanied by visible structural shifts over time. These
differences suggest that the interaction between the two series is unlikely to be stable or homogeneous
across market conditions. Accordingly, the dependence structure between Al and ESG indices may
differ across various segments of their conditional distributions, indicating that analyses focusing solely
on average effects may be insufficient. In this respect, the QQC approach provides an appropriate
framework for capturing potential nonlinear, asymmetric, and regime-dependent connectedness
patterns.

AL_NASDAQ

Figure 1. Return series of ESG and Al indices

Table 1 reports the descriptive statistics of the variables. The high excess kurtosis values observed
across all series indicate leptokurtic distributions and pronounced tail behavior. The skewness statistics
suggest that the return distributions are asymmetric, with Al_NASDAQ exhibiting positive skewness,
while the ESG index displays pronounced negative skewness (—0.690).

The Jarque—Bera (JB) test results (p < 0.01) further confirm that the series do not satisfy the normality
assumption. Taken together, the presence of asymmetry, heavy tails, deviations from normality, and
time-varying volatility suggests that linear, mean-based methods may be inadequate for capturing the
underlying dependence structure, thereby providing methodological support for the use of quantile-
based and regime-sensitive approaches such as QQC.

Table 1. Descriptive statistics

Al_NASDAQ AIQ ESG
Mean 0.000 0.000 0.089
Variance 0.001 0.001 5.185
SKewness 0.176%** 0.024 -0.690%**
(-0.004) (-0.692) (0.000)
Ex. Kurtosis 5.801*** 5.750%** 7.045%%%
' (0.000) (0.000) (0.000)
B 2292.180%** 2244.640%** 3497.469%**
(0.000) (0.000) (0.000)
ERS -4.661%** -4,375%** -16.668***
(0.000) (0.000) (0.000)
0(10) 467.627%%* 536.570%** 34.390%+*
(0.000) (0.000) (0.000)
010) 1017.620%** 885.609%** 550.598%**
(0.000) (0.000) (0.000)

Note: *, ** and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively
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3.2. Methodology

Traditional dependence analyses typically focus on information transmission at the mean level and
therefore overlook asymmetric and directional spillover effects that emerge during tail events (Diebold
and Yilmaz 2014; Engle et al. 2020). However, as noted above, the AI-ESG relationships examined in
this study exhibit nonlinear, threshold-driven, and quantile-sensitive dynamics. Accordingly, this study
employs the QQC method developed by Gabauer and Stenfors (2024), which is a modern and robust
approach for analyzing heterogeneous structures. The QQC approach investigates information
transmission across different segments of the distribution at the quantile level and reveals directional
connectedness within the system, thereby overcoming the limitations of traditional VAR-based models
(Sim and Zhou 2015; Diebold and Yilmaz 2012; Chatziantoniou et al. 2021; Yildirir Keser and Tarkun
2025). In other words, rather than focusing solely on a specific quantile (e.g., 7, = 0.05, 7, = 0.05), this
new approach captures spillovers across different quantiles (e.g., 7; = 0.05, 7, = 0.95), thereby relaxing
the assumption of positive correlation in time series (Evrim Mandaci et al. 2025).

Moreover, this method employs quantile-based Generalized Forecast Error Variance Decomposition
(GFEVD), allowing the magnitude and direction of systemic risks to be measured and enabling the
modeling of the distributional effects of shocks in a manner that is invariant to variable ordering
(Diebold and Yilmaz 2012; Chatziantoniou et al. 2021; Hadad et al. 2024). The Quantile Vector
Autoregressive model QVAR(p), which forms the foundation of the QQC framework, captures not only
the temporal dependence of time series but also their asymmetric behavior across different quantile
levels, thereby revealing heterogeneous interactions (Ando et al. 2022; White et al. 2015). The QQC
method incorporates both the magnitude of shocks and their position within the distribution, enabling
the construction of quantile-level information transfer maps and facilitating a detailed analysis of tail
risk. Consequently, directional systemic dependence can be quantified (Gabauer and Stenfors 2024). In
this regard, QQC is methodologically appropriate for analyzing the directional, nonlinear, and quantile-
based relationships between Al and ESG indicators.

For a multivariate time series y. € RV, the quantile-VAR model is defined as follows in Equation
(2) (Yildirir Keser and Tarkun 2025):

p
QT 1 Fen) = ) Bpl(®) Yoy + &(0) @
p=1

Qy«(t |.), denotes the conditional estimate of y. at quantile t while F¢_; represents the information
set available at time ¢ — 1, including the lagged values of the relevant variables. @,(z) refers to the
quantile-specific regression coefficients, and e.(t) denotes the error term corresponding to each quantile
level.

Within the Quantile-Based Connectedness framework grounded in GFEVD (Diebold and Yilmaz
2012; Gabauer and Stenfors 2024), the information transmission is defined as follows in Equation (3):

_ h-1 ’
O'jj 1 Zk=0( € Ak(T)Ze,-)z

05;(t, h) = —
S e/ A AT )

©)

In Equation (3), 6%;(t,h) represents the generalized forecast error variance decomposition
(GFEVD) for quantile level T and forecast horizon h, measuring the contribution of variable j to variable
i. Aw(1), denotes the quantile-specific moving average coefficient matrices at lag k. e; and e;, represent
the selector vectors that extract the i-th and j-th variables from the system, respectively. X denotes the
error covariance matrix, and oj; represents the j-th diagonal element of .

Accordingly, the Total Connectedness Index (TCI) is computed as follows in Equation (4):

Yixj 0%;(T, h)

TCI(z) = 2 0%;(T, h)

x 100 4
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Net directional connectedness is represented in Equation (5):

NETL(T) =Z@gji(r,h) _Zegij(‘[’h) (5)

JE JE

When this value is positive, the variable acts as an information transmitter within the system; when
it is negative, it serves as an information receiver. Unlike traditional VAR and DCC models, the QQC
approach enables the simultaneous analysis of both the magnitude of shocks and the asymmetric
structure of responses across different quantile levels. Owing to this capability, the nonlinear and
directional connectedness between Al indices and the ESG index can be modeled in a more
comprehensive manner.

4. Empirical results

In this section of the study, the quantile-level reciprocal connectedness dynamics between the
performances of Al indices and the ESG index are analyzed in detail. Owing to the QQC approach, not
only mean-based relationships but also the dependence structures that emerge under extreme market
conditions become visible. This method reveals regime-dependent and asymmetric connectedness
patterns that traditional linear models fail to capture. Consequently, it enables a deeper understanding
of how market behavior evolves across different quantiles.

Based on the TCI results in Figure 2, the connectedness between AlQ and ESG changes notably
depending on the size of shocks (horizontal axis) and where the information lies within the distribution
(vertical axis). The values displayed in the figure indicate that connectedness between the Al and ESG
indices strengthens in the upper-tail regions of the conditional distribution, while remaining elevated
also in the lower-tail states, with particularly high levels observed at extreme quantile combinations
(e.g., 77.4% at 0.05%0.05 and 63.8% at 0.95x0.95). This demonstrates that the variables exhibit strong
connectedness under both positive and negative tail scenarios. The high TCI observed in the lower-tail
quantiles indicates that, under adverse market conditions, shocks propagate more easily and in a
bidirectional manner. However, the pattern differs in the mid-quantiles: the weakening of connectedness
in this region suggests that, under normal market conditions, information flow is more limited and is
generally shaped by local dynamics. Taken together, the findings reveal that the AI-ESG connectedness
is not linear; on the contrary, it is highly sensitive to market dynamics and exhibits a strongly nonlinear
structure.
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Figure 2. Quantile total connectedness indices for AlQ and ESG

Based on the TCI results in Figure 3, the connectedness between Al_NASDAQ and ESG varies
systematically across different regions of the conditional distribution. The figure shows that overall
connectedness intensifies under tail conditions (e.g., 78.3% at 0.05x0.05 and 61.6% at 0.95x0.95),
indicating stronger interdependence during extreme distributional states. By contrast, connectedness
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weakens markedly around the central quantiles, suggesting that market interactions are more limited
under relatively normal conditions.

Taken together, these patterns indicate that the AI-ESG relationship is not constant over time or
across market regimes. Instead, the strength of connectedness is highly sensitive to distributional states,
which cannot be adequately captured by linear or mean-based approaches. This provides direct empirical
support for the use of a quantile-based and regime-sensitive framework such as QQC.
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g 06-|14.310.4/5.5 /3.4 (23|21 /23| 3 4 |56 |72
2 05-11.6/7.7| 4 |3.1]|26|25/1.9| 2 |22]|22]24
EI 04-22.2114.5/8.1 |6.3|3.5| 3 |[2.7]|4.7|71|89]| 9
< 03-42.7[32.4182[10.4]/5.2(3.8| 5 [11.2[18.4)24.426.2

0.2- 9.8/31.317.3/7.8 | 5.4 | 8.6 [19.731.5
0.1+ 44 .8/125.7| 12 | 8.6 (13.429.4/45.
0.05 - 9.6/129.1|13.7|10.1|115.7| 34
0 2)5 0.1 0.? OI3 0.4 0.5 0'6 0l7

ESG
Figure 3. Quantile total connectedness indices for Al_NASDAQ and ESG
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Figure 4 illustrates that the direction and magnitude of net connectedness between AlQ and ESG
vary across quantiles, indicating a regime-dependent structure. The prevalence of negative net values in
the lower quantiles suggests that AlQ predominantly acts as a net receiver of shocks during these states,
implying that information transmission from ESG to AIQ is relatively stronger in this region of the
distribution. In contrast, net values become partially positive in the upper quantiles, indicating that AlQ
transitions into a net transmitter role, while the ESG index assumes a relatively more responsive
position. The near-zero net values observed in the mid-quantiles point to weak or balanced directional
interactions, suggesting that information flows are less pronounced under relatively moderate market
conditions.

Taken together, these findings demonstrate that the direction of information transmission between
AIQ and ESG is not constant, but varies systematically across quantiles, highlighting a nonlinear and
regime-dependent connectedness structure.
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Figure 4. Net Quantile connectedness between AIQ and ESG
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As illustrated in Figure 5, the quantile-based net directional connectedness between Al_NASDAQ
and ESG varies markedly across quantiles, indicating a regime-dependent directional structure. The
predominance of negative net values in the lower quantiles suggests that Al_NASDAQ mainly acts as
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a net receiver in this region of the distribution, implying relatively stronger information transmission
from ESG to Al_NASDAQ under these states.

In contrast, net values turn positive in the upper quantiles, indicating that Al_NASDAQ assumes a
net transmitter role, while ESG becomes relatively more responsive. The near-zero net values observed
around the central quantiles point to weak or balanced directional interactions, suggesting the absence
of a dominant information flow under moderate conditions. Overall, these findings indicate that the
direction of information transmission between Al_NASDAQ and ESG is not constant, but changes
systematically across quantiles, highlighting a nonlinear and regime-sensitive connectedness pattern that
is fully consistent with the QQC framework.
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Figure 5. Net Quantile connectedness between Al_NASDAQ and ESG

AI_NASDAQ

According to the visual evidence presented in Figure 6, the information flow between AlQ and the
ESG index varies over time, indicating a time-varying directional connectedness structure. In the graph,
the green line (Direct TCI) represents information transmission from ESG to AlQ, the red line (Reverse
TCI) represents information transmission from AlQ to ESG, and the blue line (ATCI = Direct — Reverse)
captures the net directional dominance between the two markets. Positive values of ATCI indicate a
relative dominance of ESG-to-AlQ transmission, whereas negative values indicate dominance in the
opposite direction. During the 2020-2021 pandemic period, the Reverse TCI generally lies above the
Direct TCI, and ATCI remains predominantly negative, indicating that AIQ tends to act as a net
transmitter, while the ESG index assumes a more responsive role. This pattern suggests a temporary
strengthening of AlQ-to-ESG information transmission during this period. In the post-2022 period, the
difference between Direct and Reverse TCI narrows, and ATCI fluctuates around zero, pointing to a
more balanced and less persistent directional structure of information transmission. During this phase,
neither direction remains consistently dominant, although short-lived shifts continue to emerge.

Overall, these findings indicate that directional connectedness between AIQ and ESG is not stable
over time, but evolves across different periods, consistent with a dynamic and regime-sensitive
connectedness framework.

-25-

Reverse TClI —— Direct TCI - - ATCI

Figure 6. Direct and reverse total connectedness indices for AIQ and ESG
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The visual evidence presented in Figure 7 shows that the information flow between Al_NASDAQ
and the ESG index varies over time, indicating a time-varying directional connectedness structure.
Periods in which ATCI takes positive values indicate a relative dominance of information transmission
from ESG toward AI NASDAQ, whereas negative ATCI values indicate dominance in the opposite
direction, with Al_NASDAQ acting as a net transmitter. During the early part of the sample, the Reverse
TCI generally lies above the direct TCI, and ATCI remains predominantly negative, suggesting that
Al_NASDAQ more frequently assumes a net transmitter role, while ESG appears relatively more
responsive. In later periods, the difference between direct and reverse TCI narrows, and ATCI fluctuates
around zero, pointing to a more balanced and less persistent directional structure of information
transmission. Although short-lived episodes of directional dominance continue to emerge, no single
direction remains permanently dominant. Overall, these findings indicate that the connectedness
between Al_NASDAQ and ESG is asymmetric and time-varying, and that the direction of information
transmission changes across different periods, consistent with a regime-sensitive connectedness
framework.

-20 -

' 0 0
2020 2022 2024

Reverse TCl —— Direct TCI OH TCI

Figure 7. Direct and reverse total connectedness indices for Al_NASDAQ and ESG
5. Conclusion and discussion

This study examines the information flow between Al indices and the ESG index within a nonlinear,
regime-sensitive, and asymmetric framework. By moving beyond mean-based analysis, the findings
highlight that the dependence structure between Al and ESG markets is inherently state-dependent. The
findings show that information diffusion differs substantially in both direction and magnitude under
varying market conditions. Empirical results indicate that under adverse market regimes (lower-quantile
states), the Al_NASDAQ and AIQ indices predominantly act as net receivers, while the ESG index
assumes the role of an information transmitter. By contrast, during more optimistic market conditions,
Al indices generally emerge as dominant transmitters of information, with the ESG index responding
accordingly. This asymmetry suggests that risk- and sustainability-related signals become more
influential during stressed market environments, whereas technology and innovation-driven
expectations dominate under favorable conditions.

The results are consistent with prior studies emphasizing that information transmission within
financial systems varies over time in both direction and intensity (Diebold and Yilmaz 2012; Barunik
and Krehlik 2018). They also align with the literature highlighting the effectiveness of quantile-based
connectedness approaches in capturing risk spillovers in fintech and innovation-driven assets (Cech and
Barunik 2017; Gabauer and Stenfors 2024). Moreover, the findings are in line with evidence reported
by Ghaemi Asl et al. (2023), who document regime-sensitive interactions among financial technology
indices, as well as by Ringstad and Tselika (2024) and Naeem et al. (2021), who show that sustainability-
oriented assets exhibit asymmetric responses to market shocks. Within this context, the empirical
evidence suggests that the ESG index tends to play a direction-setting role in information propagation
during periods of adverse market conditions, indicating that ESG-related information may act as a
reference point for investors when market uncertainty intensifies.
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Overall, the analysis underscores that AI-ESG interactions are inherently dynamic and conditioned
by prevailing market regimes, rather than being governed by stable or average relationships. The
observed regime-dependent shifts in both the direction and intensity of information flow highlight the
importance of accounting for distributional heterogeneity when assessing the linkage between
technology-driven and sustainability-oriented assets.

6. Policy implications

The results indicate that information transmission in financial markets changes over time and across
different market regimes. The finding that the ESG index assumes a more influential role in information
flow during periods of heightened market stress suggests that ESG indicators may function as stabilizing
components in portfolio diversification. From a policy perspective, this implies that sustainability-
oriented market signals could be systematically integrated into macroprudential monitoring frameworks
as complementary indicators of market-wide risk sensitivity. In this context, ESG-related measures may
serve not only as long-term sustainability benchmarks but also as short-term signals reflecting shifts in
market sentiment under stressed conditions.

Accordingly, incorporating ESG-based risk indicators into financial stability frameworks and
developing stress-testing protocols that explicitly account for regime shifts may provide policymakers
with significant advantages in the early detection of systemic vulnerabilities. Such an approach becomes
particularly relevant in environments where technological innovation and Al-driven investment
dynamics amplify cross-market information transmission. Embedding regime-sensitive indicators into
stress-testing exercises may help policymakers better capture nonlinear spillover effects that intensify
during extreme market states.

From the perspective of regulatory authorities, the development of policy tools that monitor potential
excessive signal amplification arising from Al-driven dynamics and that support balanced information
flows across financial markets may contribute to maintaining overall market stability. In particular,
supervisory frameworks that jointly assess Al-driven market activity and sustainability-related signals
may improve the oversight of emerging sources of systemic risk. These implications are especially
relevant for institutions, financial regulators, and institutional investors concerned with systemic risk
monitoring under technologically driven market dynamics. For institutional investors, incorporating
regime-dependent ESG signals into portfolio risk management strategies may also enhance resilience
against abrupt market transitions.

7. Limitations and future research

This study is limited to daily-frequency data covering the period from 1 November 2018 to 27
October 2025, and the Al-sustainability relationship is examined only through two global Al indicators
(Al_NASDAQ and AlQ) and ESG index (MSCI World ESG Leaders). The restriction of the dataset to
a specific set of indices and a relatively narrow time span constitutes the main limitations of the analysis.

In future research, the connectedness between Al and ESG could be examined using sectoral or
regional classifications, and the analysis could also be extended to the individual subcomponents of
ESG. Additionally, the application of comparative approaches that incorporate different market regimes,
structural breaks, and time-varying dynamics may provide a more comprehensive understanding of the
connectedness between Al and ESG. In addition, employing alternative definitions of Al and ESG
indices may allow for testing the sensitivity of the findings to index selection. Moreover, the use of
alternative data frequencies (e.g., weekly or higher-frequency observations) could help disentangle
short- and long-horizon components of AI-ESG information transmission, thereby offering further
insights into the temporal structure of regime-dependent connectedness.
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This study examines the dynamic connectedness between sustainable
cryptocurrencies and Ethereum using the Quantile-on-Quantile Connectedness
(QQC) methodology. The dataset consists of daily observations covering the
period from April 19, 2019 to September 12, 2025. The analysis focuses on
Cardano (ADA), IOTA, and Stellar (XLM), which are known for their high energy
efficiency and environmentally sustainable blockchain architectures. Owing to its
ability to measure the interactions between transmitting and receiving variables
across different distributional quantiles, the QQC approach enables a detailed
assessment of the direction and magnitude of information spillovers, particularly
under extreme market conditions such as stress episodes or liquidity shortages.
The findings indicate that Ethereum acts predominantly as a systemic net
transmitter across most quantile levels, while Cardano and IOTA serve as net
receivers, especially within medium and high quantiles. Stellar exhibits limited
connectedness during low-volatility market regimes. Overall, the results suggest
that the information transmission dynamics of sustainable crypto assets are highly
sensitive to Ethereum’s market influence, highlighting the increasing role of
energy-efficient blockchain ecosystems in the broader digital finance landscape.
The findings are important for portfolio managers in terms of making asset
allocation decisions by taking into account the risk and diversification potential of
sustainable cryptocurrencies relative to Ethereum.

1. Introduction

The theoretical linkage between sustainable (green) digital assets and conventional (dirty) digital
assets primarily stems from structural differences in their market identities, perceived legitimacy, and

risk-bearing characteristics. While

conventional digital assets are largely associated with speculative

price dynamics, high volatility, and short-term investment horizons, sustainable digital assets are
positioned around environmental awareness, normative values, and long-term sustainability narratives.
This differentiation establishes a theoretical foundation within the crypto ecosystem that allows for both
synchronous interactions and conditional decoupling between the two asset classes (Hagq and Bouri

2022; Sharif et al. 2023; Pham et al.
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and dirty digital assets exhibits an asymmetric and regime-dependent interaction structure. Conventional
digital assets, owing to their deeper liquidity and broader investor base, tend to function as central hubs
that absorb and transmit market shocks more rapidly. In contrast, sustainable digital assets are followed
by a more selective investor base, leading to differentiated responses to information shocks. As a result,
return and risk transmission often occurs in a unidirectional or quantile-sensitive manner rather than
symmetrically (Naeem et al. 2023; Abdullah et al. 2025; Belguith et al. 2025).

From a behavioral finance perspective, the theoretical connection between the two asset classes is
shaped by ethical perceptions, environmental awareness, and investor motivation. Sustainable digital
assets are not perceived solely as financial instruments but also as representations of a normative and
environmentally conscious stance, which directly influences investors’ risk tolerance, holding periods,
and crisis-time portfolio adjustments. By contrast, conventional dirty digital assets are more closely
associated with herd behavior, excessive price reactions, and speculative sentiment. This behavioral
divergence provides a theoretical explanation for the persistent asymmetry observed in the interaction
between the two asset groups, even during periods of market turmoil (Sharif et al. 2023; Umar et al.
2023; Vinogradova and Gubareva 2025). From a financial stability and systemic risk perspective, the
linkage between sustainable and dirty digital assets can be interpreted through the redistribution of risk
within the crypto ecosystem. Conventional digital assets frequently emerge as core transmitters of
systemic risk, whereas sustainable digital assets, although not fully insulated from such risks, may
assume receiver or partial buffering roles under specific market regimes. This indicates that the
relationship between the two asset classes cannot be adequately captured by static correlations, but
instead reflects a nonlinear and state-dependent interaction structure (Naeem et al. 2023; Chui et al.
2025; Deng et al. 2025).

Time and market-state dependence constitutes another fundamental dimension of the theoretical
relationship between green and dirty digital assets. Under normal market conditions, interactions
between these assets tend to remain relatively weak; however, during periods of heightened uncertainty
and extreme market stress, the structure of connectedness can intensify or even reverse. Such tail-
dependent behavior suggests that the links between sustainable digital assets and conventional
cryptocurrencies are redefined during crisis episodes rather than remaining stable over time (Pham et al.
2022; Naeem et al. 2023; Alshammari et al. 2025). Finally, the theoretical relationship between
sustainable green digital assets and conventional dirty digital assets should be evaluated within the
broader context of the normative transformation of digital finance. By offering an alternative value
system and ethical framework within crypto markets, green digital assets deepen intra-market
segmentation, while their interaction with dirty digital assets becomes a key indicator of whether this
transformation is temporary or structurally embedded. In this sense, the linkage between the two asset
classes represents not merely a financial interaction but also a structural signal regarding the
evolutionary trajectory of the digital asset ecosystem (Esmaeilian et al. 2024; Vinogradova and
Gubareva 2025).

This study aims to examine the dynamic connectedness structure between sustainable
cryptocurrencies, namely Cardano (ADA), IOTA (MIOTA), and Stellar (XLM), and Ethereum (ETH)
by employing the Quantile-on-Quantile Connectedness (QQC) approach developed by Gabauer and
Stenfors (2024). The analysis seeks to reveal the direction, magnitude, and tail risk dependence of
information transmission among these assets across different time horizons and return quantiles
representing varying market conditions, including low, medium, and high return regimes. Within this
framework, the study empirically investigates whether Ethereum acts as a systemic information
transmitter or receiver vis a vis sustainable digital assets, thereby providing deeper insights into the time
and regime dependent nature of digital financial sustainability.

The main motivation of this study stems from the fact that the existing cryptocurrency literature has
addressed the relationships between sustainable (green) crypto assets and conventional digital currencies
in a rather limited and fragmented manner. Most prior studies either examine sustainable
cryptocurrencies in isolation or evaluate them within an aggregated framework of the broader crypto
market. In contrast, empirical research that directly and explicitly investigates the dynamic interaction
between sustainable cryptocurrencies and dominant conventional digital currencies, particularly
Ethereum, remains scarce. However, given its market depth, liquidity, and central role in information
diffusion, Ethereum represents a natural benchmark and reference asset for understanding the behavior
of sustainable digital assets. This study aims to fill this gap by analyzing the relationships between
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sustainable cryptocurrencies, namely Cardano, I0TA, and Stellar, and Ethereum within a QQC
framework. In doing so, the study moves beyond the average-based or single-dimension connectedness
approaches that dominate the existing literature. The quantile-on-quantile methodology allows for the
simultaneous examination of the direction and intensity of information transmission across low,
medium, and high return regimes, thereby enabling a more robust and clearer identification of nonlinear,
asymmetric, and regime-dependent relationships between sustainable and conventional digital assets.
As such, this study reveals dimensions of interaction that remain hidden under conventional mean-based
analyses.

Another important contribution of this study lies in empirically assessing the systemic role of
Ethereum vis-a-vis sustainable cryptocurrencies. Whether Ethereum functions as a dominant
information transmitter or, under certain market conditions, assumes the role of an information receiver
is a critical question for understanding the internal dynamics of the digital financial ecosystem. By
demonstrating that this role may vary across time and return quantiles, the study challenges the notion
of a static and unidirectional leadership structure within cryptocurrency markets. From an applied
perspective, the findings offer important implications for investors and portfolio managers. Identifying
how the relationship between sustainable cryptocurrencies and Ethereum evolves across different
market regimes, particularly in extreme return conditions, provides valuable insights for risk
management, portfolio diversification, and hedging strategies. Moreover, understanding the conditions
under which sustainable digital assets decouple from or become more strongly connected with
conventional cryptocurrencies contributes to a more informed interpretation of investor behavior in
crypto markets. Finally, this study also provides meaningful insights for policymakers and regulatory
authorities. In the context of digital financial sustainability, a key question concerns the extent to which
sustainable crypto assets are integrated with or differentiated from the conventional cryptocurrency
ecosystem. By revealing the regime-dependent nature of the relationships between sustainable
cryptocurrencies and a central digital currency such as Ethereum, this study supports the development
of more targeted and evidence-based regulatory and policy frameworks. In this sense, the study offers a
comprehensive perspective that jointly informs academic debates and policy discussions on the
sustainable transformation of digital finance.

The remainder of the paper is structured as follows. Section 2 offers an overview of the related
literature. Section 3 introduces the dataset, variables, and econometric methods used. Section 4 discusses
the results in light of the existing literature. The final section synthesizes the key findings of the study,
discusses their policy implications, and outlines the main limitations alongside directions for future
research.

2. Literature review

In recent years, the environmental impacts and sustainability dimensions of cryptocurrency markets
have become a rapidly expanding area of research in the finance literature. While the environmental
costs of energy-intensive conventional (dirty) cryptocurrencies have been widely debated, these
criticisms have paved the way for the emergence and academic examination of "clean”, "green”, and
"sustainable” digital assets. In this context, the literature comprehensively investigates the dynamic
connectedness, spillover, and risk transmission mechanisms between green cryptocurrencies and dirty
cryptocurrencies, energy markets, carbon markets, green bonds, ESG assets, and macro-financial
indicators (Haq and Bouri 2022; Pham et al. 2022; Sharif et al. 2023; Siddique et al. 2023; Hag et al.
2023; Hag et al. 2023a).

The first major strand of the literature focuses on return and volatility connectedness between green
and dirty cryptocurrencies. Studies employing dynamic connectedness, TVP-VAR, and frequency-
based approaches document that green cryptocurrencies generally act as lower risk transmitters
compared to dirty cryptocurrencies (Sharif et al. 2023; Naeem et al. 2023; Yildirim et al. 2025; Belguith
et al. 2025). It is emphasized that this connectedness intensifies during periods of crisis and heightened
uncertainty, whereas under normal market conditions green cryptocurrencies exhibit a more decoupled
structure (Umar et al. 2023; Haq and Bouri 2022; Abdullah et al. 2025).

A second important stream of research examines the relationships between green cryptocurrencies
and energy and fossil fuel markets. These studies show that fossil fuel price shocks affect green
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cryptocurrencies particularly in the medium and long run, while a stronger and more stable co-
movement is observed with clean energy stocks and renewable energy assets (Umar et al. 2023a; Ali et
al. 2024; Dias et al. 2023; Kaur et al. 2025; Pereira et al. 2025). Moreover, the connectedness between
energy markets and green cryptocurrencies is shown to vary substantially across time, frequency, and
quantiles (Naeem et al. 2023a; Deng et al. 2025).

Another prominent line of research investigates the interaction between green cryptocurrencies and
carbon markets, carbon prices, and climate-related assets. The findings indicate that carbon price
volatility and heightened climate risk awareness strengthen the correlation with green cryptocurrencies;
however, this relationship is largely asymmetric and concentrated in extreme quantiles (Pham et al.
2022; Aloui et al. 2025; Abdullah et al. 2025). Within this framework, carbon-backed crypto assets and
climate awareness indicators emerge as key determinants of the risk dynamics of green cryptocurrencies
(Aloui et al. 2025; Fu et al. 2024).

The connectedness between green cryptocurrencies and green bonds, ESG indices, and sustainable
financial instruments also occupies a central position in the literature. Studies reveal bidirectional but
limited risk transmission between green cryptocurrencies and green bonds, while the diversification
benefits with ESG assets become more pronounced during periods of market stress (Umar et al. 2023;
Hassan et al. 2022; Mnif et al. 2025; Chui et al. 2025; Tabassum et al. 2024). In addition, the integration
of Islamic crypto assets and halal financial instruments into sustainable crypto markets has emerged as
a growing research area (Mnif et al. 2024; Tabassum et al. 2024).

Studies employing time-frequency and quantile-based methods clearly demonstrate that
connectedness structures are highly sensitive to market conditions. In particular, during periods of
downside risk, extreme quantiles, and heightened volatility, the risk transmission between green
cryptocurrencies and other assets intensifies significantly (Naeem et al. 2023; Alshammari et al. 2025;
Deng et al. 2025; Chui et al. 2025). By contrast, under normal market conditions, green cryptocurrencies
tend to assume a more independent and diversification-enhancing role (Peng et al. 2024; Vinogradova
and Gubareva 2025).

Studies focusing on media attention, environmental awareness, and cryptocurrency uncertainty
indices emphasize the role of information flows in shaping green cryptocurrency dynamics. Increases in
environmental media attention and climate awareness strengthen the decoupling of green
cryptocurrencies from other financial assets, whereas periods of heightened cryptocurrency uncertainty
intensify risk contagion between green and dirty cryptocurrencies (Ndubuisi and Urom 2023; Fu et al.
2024; Irani and Isayev 2025; Klayme and Gokmenoglu 2023).

From a portfolio management perspective, the majority of studies suggest that green cryptocurrencies
can serve as diversification and hedging instruments under certain conditions. When evaluated alongside
energy, carbon, commaodity, and conventional cryptocurrency assets, green cryptocurrencies are shown
to reduce portfolio risk; however, this contribution is time-varying and strongly dependent on frequency
and market stress (Mnif et al. 2025; Attarzadeh et al. 2024; Kaur et al. 2025a; Naeem et al. 2023).

Finally, recent studies discuss whether green and sustainable crypto assets can be positioned as an
independent asset class. The evidence suggests that these assets are still in an early stage of development;
nevertheless, with the advancement of sustainable finance, climate policies, and digital transformation,
green cryptocurrencies are expected to assume a more prominent role in the financial system over the
long run (Esmaeilian et al. 2024; Vinogradova and Gubareva 2025; Yin et al. 2023; Alshammari et al.
2025a; Mnif et al. 2024a).

Collectively, these studies reinforce several overarching themes, indicating that interactions within
sustainable digital asset markets are inherently asymmetric and strongly regime-dependent, with tail
behaviour and extreme-quantile dynamics playing a central role in shaping return and volatility
transmission mechanisms. In this strand of the literature, quantile-on-quantile and quantile-frequency
methodologies have increasingly been preferred, as they are particularly effective in capturing nonlinear
and state-dependent linkages that conventional mean-based approaches fail to detect. Moreover,
sustainability-oriented digital assets exhibit behavioural patterns that are clearly distinct from those of
traditional cryptocurrencies, especially during periods of heightened market stress and systemic crises.
Despite these methodological and empirical advances, the existing literature remains limited in two
important respects. First, there is a notable lack of studies that focus exclusively on sustainability-
oriented cryptocurrencies and metaverse-associated green tokens within a QQC framework. Second,
empirical evidence based on high-frequency datasets capable of jointly capturing short-run shocks and
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long-run regime shifts within sustainable digital ecosystems remains relatively scarce. Accordingly, the
present study addresses these gaps by applying a QQC approach to high-frequency data in order to
examine systemic risk and information-transmission dynamics within the sustainable crypto-metaverse
nexus.

3. Data and methodology

3.1. Dataset and variables

This study aims to examine the return and volatility spillovers, shock transmission mechanisms, and
time-varying connectedness dynamics between sustainable cryptocurrencies and Ethereum. The main
objective of the analysis is to reveal how the interaction between these assets evolves not only under
average market conditions but also across different time horizons and return levels. In this context, the
study empirically assesses whether the relationships between sustainable cryptocurrencies and Ethereum
are asymmetric, nonlinear, and sensitive to market conditions. The analysis is based on a daily dataset
covering the period from 19 April 2019 to 12 September 2025. This period encompasses a broad time
span that reflects different market conditions and structural transformations in cryptocurrency markets.
The use of daily data allows for the simultaneous examination of short-term shocks and more persistent
interaction effects. All price data employed in the study were obtained from the reliable data source
Investing.com. The selected assets represent digital currencies that stand out for their relatively low
energy consumption, innovative blockchain architectures, and long-term sustainability orientation.
Accordingly, the analysis includes the series for Ethereum (ETH), Cardano (ADA), IOTA (MIOTA),
and Stellar (XLM). These assets are classified as sustainable cryptocurrencies, as they employ energy-
efficient blockchain protocols such as Proof-of-Stake (PoS) or Directed Acyclic Graph (DAG)
structures.

Ethereum (ETH), Cardano (ADA), IOTA (MIOTA), and Stellar (XLM) are digital assets that stand
out within the blockchain ecosystem in terms of their technological architectures, areas of application,
and sustainability-oriented approaches. Ethereum is one of the most widely used platforms for smart
contracts and decentralized applications, and its transition to a Proof-of-Stake-based consensus
mechanism in 2022 significantly improved its energy efficiency. Cardano adopts an academically driven
development approach and is built entirely on the Proof-of-Stake-based Ouroboros protocol, aiming to
simultaneously achieve security, scalability, and sustainability. IOTA differs from traditional
blockchains by relying on a Directed Acyclic Graph (DAG) architecture known as the Tangle; this
mining-free structure enables energy-efficient and low-cost transactions, particularly for Internet of
Things (10T) applications. Stellar, on the other hand, is designed to facilitate cross-border payments and
enhance financial inclusion, offering low transaction costs and fast validation times. Taken together,
these four assets provide a comprehensive framework that encompasses Ethereum as a central actor with
deep market integration, as well as alternative digital assets that differentiate themselves through
sustainability, innovative architectures, and specialized use cases.

Ethereum’s "Merge" update in 2022, which reduced its energy consumption by approximately 99%,
Cardano’s fully PoS-based consensus model, IOTA’s mining-free DAG architecture, and Stellar’s low
energy requirements for transaction validation collectively reinforce the relevance of these assets for
sustainability-focused analysis. These characteristics also make Ethereum a meaningful benchmark for
examining its connectedness with other sustainable crypto assets.

To capture asymmetric and quantile-dependent relationships among variables, this study employs
the Quantile-on-Quantile Connectedness (QQC) approach developed by Gabauer and Stenfors (2024).
While conventional mean-based connectedness models mainly summarize average interactions under
"normal” market conditions, the QQC framework explicitly reveals how these interactions vary across
different segments of the distribution, such as low, medium, and high return or volatility regimes. The
QQC approach adopts a two-dimensional structure that simultaneously measures both the intensity of
shock transmission and the responsiveness of the receiving variable, thereby capturing information and
volatility flows beyond a single average coefficient. This enables a more precise identification of
whether the interactions between sustainable crypto assets and Ethereum strengthen in tail quantiles,
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under which conditions spillovers intensify, and in which regimes they weaken. In this respect, QQC
provides a dynamic and tail-sensitive analytical framework that allows the connectedness between the
sustainable crypto ecosystem and Ethereum to be examined beyond simple average effects.

3.2. Variable transformation

To ensure stationarity in the time series and facilitate interpretation of results in percentage terms,
logarithmic differencing was applied to all variables. Accordingly, each transformed variable is defined

as follows in Equation (1).
Aln X, = In(X,) — In(X,_,) (1)

Here, Aln X; denotes the logarithmic change in the corresponding series at time t. This transformation
ensures variance stabilization while allowing increases or decreases in the variables to be evaluated in
percentage terms.

3.3. Quantile VAR model

The econometric foundation of this study is based on the Quantile Vector Autoregression (QVAR)
model. For multivariate time series y, € RV, the quantile-VAR model is defined as follows in Equation

(2):
p ©
xe = KD+ D B@xe + w(® = @D + ) 4® ua (@) @
j=1 i=0

Here, Qy, (7 | Fy_1) represents the conditional t-quantile estimate of y;; F;_; denotes the information
set available at time t — 1; @, (7) refers to the coefficient matrices specific to the quantile level; and

&:(1) denotes the error term. This structure allows modelling the heterogeneity in the response of
variables to their past values across different quantile levels (for example, 0.1, 0.5, 0.9).

3.4. Generalized forecast error variance decomposition (GFEVD)

Using the QVAR model, the generalized forecast error variance decomposition, which measures the
directional flow of information among variables, is computed as follows in Equation (3):

;" Trzo(eiAp(T)Ze))?

Yrzo(eiAr(D)ZAK(1)'e;)

89(t,h) = ®3)
In Equation (3), 95 (z, h) denotes the contribution of variable j to variable iat quantile level T within

the h-step-ahead forecast horizon. A, (7) represents the quantile-specific moving-average coefficient
matrices; e; and e; are the selection vectors corresponding to the relevant variables in the system; and X

denotes the error covariance matrix. This framework quantifies directional information flow by
measuring the effects that variables exert on one another across different quantile levels.

3.5. Total connectedness index (TCI)

To determine whether each variable acts as a net transmitter or net receiver of information within the
system, the directional net connectedness measure is defined as follows in Equations (4):
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TCI(T) = =2 — % 100 (4)

This index expresses, in percentage terms, the overall rate of interaction occurring among the
variables in the system. A high TCI value indicates strong and widespread information transmission
throughout the system, whereas a low value suggests that the variables behave more independently.

3.6. Directional net connectedness

To determine whether each variable acts as a net transmitter or net receiver of information within the
system, the directional net connectedness measure is defined as follows in Equation (5):

NET;(z) = Z 0% (x,h) Z 64 (x, ) )

JE] JE

If NET;(t) > 0, the corresponding variable functions as a net transmitter of information within the
system; if NET;(t) < 0, it acts as a net receiver. This measure enables a quantitative assessment of each
variable’s directional interaction role across different quantile levels.

4. Empirical results

In this section, the dynamic relationships between the metaverse and sustainable crypto assets are
analysed using the QQC approach. The analysis covers the period from 19 April 2019 to 12 September
2025 and is conducted using daily price returns. Unlike traditional mean-based methods, the QQC
framework allows the examination of asymmetries, tail risks, and time-varying shock transmissions by
uncovering the dynamics that change under different market conditions. The obtained results are first
supported by descriptive statistics that reveal the distributional characteristics of the series, followed by
the presentation of total, net, and directional connectedness analyses.

Table 1. Descriptive Statistics

CARDANO IOTA XLM ETHEREUM
Mean -0.001 0 0 0.013
Variance 0.002 0.003 0.003 0.236
Skewness -0.168*** 0.203*** 1.332*** 40.087***
(0.005) (0.001) (0.000) (0.000)
Ex. Kurtosis 5.534*** 10.741*** 19.369*** 1624.382***
(0.000) (0.000) (0.000) (0.000)
JB 2137.611*** 8034.852*** 26583.181*** 183940710.108***
(0.000) (0.000) (0.000) (0.000)
ERS -15.905*** -11.895*** -16.390*** -18.103***
(0.000) (0.000) (0.000) (0.000)
Q(10) 20.442%** 19.758*** 11.325** 0.784
(0.000) (0.000) (0.037) (0.997)
Q?(10) 05.107*** 43.560*** 17.146*** 0.003
(0.000) (0.000) (0.002) (1.000)

Note: *, ** and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively

Table 1 reports the key descriptive statistics for Cardano, IOTA, Stellar (XLM), and Ethereum. The
mean and variance values indicate substantial differences across assets in terms of both levels and
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volatility. In particular, Ethereum’s high variance reflects a more turbulent structure over the examined
period. Significant deviations of skewness and kurtosis from zero demonstrate that the series exhibit
asymmetric and fat-tailed distributions, while the Jarque-Bera test results confirm the rejection of the
normality assumption. The ERS unit-root test verifies that the series are stationary, whereas the Q(10)
and Q?*(10) statistics point to the possibility of autocorrelation and volatility clustering. Overall, the
descriptive statistics suggest that crypto asset markets exhibit high volatility and extreme-risk
characteristics, indicating that a quantile-based modelling approach provides an appropriate analytical
framework for these series.
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Figure 1. Quantile total connectedness indices for Ethereum and Cardano

Figure 1 illustrates the total connectedness between Ethereum and Cardano across various quantile
combinations. The darker shades in the heatmap represent regions where information or volatility
spillovers intensify at specific quantile pairings. The analysis indicates that TCI values increase notably
in the tail quantile regions. This finding reveals that during periods of extreme upward or downward
movements, the interaction between Ethereum and Cardano strengthens, meaning that market shocks
propagate more intensely between these two assets. Conversely, the relatively lower TCI values
observed in the mid-quantile regions suggest that under normal market conditions, the two assets exhibit
partial decoupling. This result implies that portfolio diversification potential diminishes during periods
of crisis and market stress, whereas Ethereum and Cardano tend to behave more independently when
markets are calmer.
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Figure 2. Quantile total connectedness indices for Ethereum and IOTA
Figure 2 presents the quantile total connectedness indices for Ethereum and IOTA. In the IOTA-

Ethereum relationship, it is observed that TCI values are relatively high not only in the tail quantiles but
also in the mid-quantile regions. This indicates that [OTA’s market sensitivity is not limited to extreme
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price movements; even under more 'normal" market conditions, it maintains a strong interaction with
Ethereum. In other words, the IOTA-Ethereum linkage exhibits a more widespread and persistent
connectedness structure. This result suggests that, due to IOTA’s integration with the metaverse
ecosystem, it may respond early to trends originating in Ethereum. Consequently, holding these two
assets together for diversification purposes may offer limited risk-reduction benefits.
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Figure 3. Quantile total connectedness indices for Ethereum and XLM

Figure 3 displays the quantile total connectedness indices structure between XLM and Ethereum. In
the XLM panel, the TCI values exhibit a more dispersed and quantile-specific pattern. While the
connectedness strengthens at certain quantile pairings, it weakens in others. This heterogeneous structure
indicates that the interaction between XLM and Ethereum is highly dependent on specific market
conditions and cannot be explained by a general correlation pattern. In this context, XLM may function
at times as a risk-reducing asset in portfolios, while at other times it may act as a factor that accelerates
shock transmission.
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Figure 4. Net Quantile connectedness between Ethereum and Cardano

Figure 4 illustrates the direction of net quantile connectedness between Ethereum and Cardano.
Negative shades indicate that Cardano is a net receiver of information, whereas positive shades signify
that it acts as a net transmitter. The results reveal that negative tones dominate most of the matrix,
indicating that Cardano generally functions as a net shock receiver. This finding supports the notion that
Ethereum assumes a central role as a shock transmitter due to its market size, liquidity level, and
ecosystem depth. This structure suggests that during periods of market turbulence, Cardano is more
sensitive to movements originating from Ethereum; thus, news flows and price dynamics in Ethereum
may exert persistent effects on Cardano.
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Figure 5 presents the net connectedness structure for the IOTA-Ethereum relationship across various
quantile combinations. Although IOTA appears as a net receiver in most quantile combinations, weak
positive effects emerge in certain mid- and upper-quantile regions. This indicates that IOTA’s influence
on Ethereum increases—albeit modestly—under specific market conditions, suggesting periods of
mutual interaction. However, the overall pattern clearly shows that IOTA is less central and more
sensitive compared to Ethereum.
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Figure 5. Net Quantile connectedness between Ethereum and IOTA

Figure 6 displays the net quantile connectedness structure between XLLM and Ethereum. In the XLM
panel, both positive and negative shades coexist, indicating that the directional relationship shifts across
different quantile combinations. This finding suggests that XLLM exhibits a bidirectional interaction
pattern. In some periods, it receives shocks from Ethereum, while in others, it responds to the market
with its own dynamics or partially transmits shocks outward. This bidirectional structure implies that
XLM holds a more reactive and peripheral market position, yet it can gain strategic importance during
certain periods.
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Figure 6. Net Quantile connectedness between Ethereum and XLM

Figure 7 illustrates the joint movement of the direct and reverse TCI indices for the Ethereum—
Cardano pair over time. The results show that both indices rise notably during periods of market
turbulence; however, during crisis episodes, the reverse TCI reaches relatively higher values. This
finding indicates that reverse-quantile interactions become more dominant under extreme volatility
conditions. In other words, during downturn scenarios, the flow of information from Cardano to
Ethereum also increases, making the interaction bidirectional. Nevertheless, the long-term average
suggests that Ethereum clearly maintains its dominant role.

Figure 8 shows the temporal evolution of the direct and reverse TCI indices between Ethereum and
IOTA. Compared to the Cardano pair, the differences between the two indices appear narrower; however,
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in recent periods, the direct TCI displays an upward trend. This result suggests that in recent years, [OTA
has developed a more autonomous price dynamic relative to Ethereum, partially reducing the
bidirectional transmission of shocks. This pattern implies that IOTA may be moving toward greater
independence, potentially due to technological advancements or an expansion of its application areas.
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Figure 8. Direct and reverse total connectedness indices for Ethereum and IOTA
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Figure 9. Direct and reverse total connectedness indices for Ethereum and XLM

Figure 9 presents the direct and reverse TCI indices for the XLM-Ethereum pair. The graph reveals

periodic role shifts: in some periods, Ethereum-driven spillovers dominate, while in others, movements
originating from XLM become more prominent. This fluctuating structure indicates that XL M’s role in
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the market is sensitive to cyclical conditions and that there is no stable leader-follower relationship.
Therefore, dynamic risk-management approaches should be preferred in portfolios that include XLM.

5. Conclusion and discussion

The findings of this study clearly demonstrate that the relationships between sustainable
cryptocurrencies and conventional digital currencies exhibit a nonlinear, asymmetric, and market-
regime-dependent structure. In particular, the pronounced increase in total connectedness (TCI) values
between Ethereum and Cardano in the tail quantiles indicates that information and shock transmission
intensifies during periods of heightened market stress. This result is consistent with prior studies
emphasizing that interactions between green and conventional crypto assets strengthen during crisis
periods (Pham et al. 2022; Sharif et al. 2023; Naeem et al. 2023). By contrast, the relatively lower
connectedness observed in the middle quantiles suggests partial decoupling under normal market
conditions, implying that sustainable cryptocurrencies may exhibit a degree of independence during
calmer periods.

The results for the Ethereum-IOTA relationship partially diverge from several findings in the existing
literature. In this study, TCI values remain high not only in the tail quantiles but also across the middle
quantiles, indicating that the interaction between IOTA and Ethereum is persistent and widespread rather
than being confined to extreme market conditions. This finding suggests that sustainable
cryptocurrencies do not uniformly behave as crisis-sensitive assets and that certain tokens may remain
strongly linked to the core of the conventional crypto market even under normal conditions. This
outcome aligns with studies emphasizing the heterogeneous nature of sustainable digital assets (Haq and
Bouri 2022; Vinogradova and Gubareva 2025). Moreover, IOTA’s tendency to respond early to
Ethereum-driven market signals supports the argument that green crypto assets may exhibit selective
integration within the broader crypto ecosystem (Umar et al. 2023).

The results concerning the Ethereum-XLM relationship further reinforce the state-dependent and
role-shifting perspective highlighted in the literature. Both total and net connectedness measures indicate
that XLM alternates between acting as a shock receiver and, in some quantile combinations, a modest
shock transmitter. This heterogeneous structure suggests that sustainable cryptocurrencies do not follow
a uniform behavioral pattern and may attain systemic relevance under specific market conditions. These
findings are consistent with earlier evidence showing that the role of green crypto assets varies across
tail risks and quantiles (Naeem et al. 2023; Deng et al. 2025; Chui et al. 2025).

Net connectedness results indicate that Ethereum generally assumes a dominant role as an
information transmitter. The fact that Cardano and IOTA appear as net receivers in most quantile
combinations supports the literature emphasizing Ethereum’s central position in the crypto ecosystem
due to its market size, liquidity, and informational depth (Sharif et al. 2023; Abdullah et al. 2025).
Nevertheless, the presence of weak positive net effects for IOTA and XLM in certain middle and upper
quantiles suggests that sustainable cryptocurrencies are not entirely passive and can, under specific
conditions, exert influence on Ethereum. This challenges the notion of a strictly unidirectional and static
leader—follower structure in cryptocurrency markets.

The time-varying TCI results strongly confirm the phenomenon of intensified connectedness during
crisis periods, as emphasized in the literature. For the Ethereum-Cardano pair, the rise in reverse TCI
during turbulent episodes indicates that information flows become bidirectional under downside market
conditions. This finding supports studies arguing that sustainable cryptocurrencies are not merely
passive recipients of shocks but may engage in more complex interactions during periods of extreme
volatility (Pham et al. 2022; Alshammari et al. 2025). At the same time, the persistence of Ethereum’s
dominance in the long-run average suggests that systemic hierarchy is weakened but not fully
eliminated.

The temporal results for the Ethereum-IOTA and Ethereum-XLM pairs reveal that sustainable
cryptocurrencies occupy an evolving market position over time. In particular, the recent increase in
direct TCI for IOTA suggests that it has begun to develop a more autonomous price dynamic relative to
Ethereum. Similarly, the periodic role reversals observed for XLM indicate a market position that is
highly sensitive to cyclical conditions. These findings are consistent with recent literature emphasizing
that sustainable cryptocurrencies exhibit dynamic and context-dependent roles rather than static market
identities (Vinogradova and Gubareva 2025; Esmaeilian et al. 2024).
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Overall, the findings of this study show that the relationships between sustainable cryptocurrencies
and conventional digital currencies are quantile-, time-, and regime-dependent, thereby extending the
existing literature beyond the insights offered by average-based approaches. By employing the QQC
framework, this study explicitly uncovers tail risks, directional information transmission, and regime-
specific dynamics that are often overlooked in conventional analyses. In this respect, the study provides
a more nuanced and comprehensive understanding of the role of sustainable digital assets within the
broader cryptocurrency ecosystem and makes a meaningful contribution to the existing literature.

6. Policy implications and recommendations

The findings of this study demonstrate that the interaction between sustainable cryptocurrencies and
conventional digital currencies exhibits a time, quantile, and market regime dependent structure. This
implies that policy frameworks targeting digital asset markets should move beyond uniform and static
regulatory approaches and instead adopt flexible and condition-dependent designs. In particular,
Ethereum’s dominant role as an information transmitter vis-a-Vvis sustainable cryptocurrencies indicates
that this asset should be treated as a special case within regulatory frameworks aimed at maintaining
market stability. From the perspective of regulatory authorities, the intensification of linkages between
sustainable cryptocurrencies and central digital currencies such as Ethereum during crisis periods
suggests that channels of systemic risk transmission may be reconfigured through these assets.
Accordingly, considering sustainable cryptocurrencies as fully insulated or inherently low risk
instruments during periods of market stress may be misleading. Policymakers should therefore develop
early-warning and monitoring mechanisms that explicitly account for tail risks and asymmetric
information spillovers involving sustainable digital assets.

For investors and portfolio managers, the results indicate that sustainable cryptocurrencies should
not be viewed unconditionally as safe-haven or hedging instruments. The strengthening of
connectedness between Ethereum and sustainable cryptocurrencies in extreme quantiles and during
periods of heightened market stress implies that portfolio diversification benefits may diminish precisely
when they are most needed. Consequently, portfolio strategies should be designed not solely on average
relationships, but rather on quantile- and regime-sensitive risk dynamics. From a financial stability
perspective, the dynamic and time-varying positions of sustainable cryptocurrencies relative to
Ethereum suggest that these assets can alternately function as passive shock receivers or, under certain
conditions, as limited shock transmitters. This finding underscores that sustainable cryptocurrencies
should not be treated as secondary or insignificant market participants within regulatory assessments.
Instead, their potential to assume systemic relevance under specific market regimes should be explicitly
recognized.

Moreover, the evolving market roles of sustainable digital assets imply that regulatory policies must
be supported by continuous and adaptive updates. Evidence that assets such as IOTA and XLM can, at
times, develop more autonomous price dynamics relative to Ethereum suggests that sustainable
cryptocurrencies may gradually evolve into a more independent market segment. In this context,
regulatory bodies should closely monitor technological developments and changes in market integration
levels. Finally, in line with broader objectives of digital financial sustainability, policymakers should
evaluate sustainable cryptocurrencies not merely as an environmental or ethical category, but within a
framework that explicitly considers their market interactions and systemic risk channels. The findings
derived from the QQC approach employed in this study demonstrate that such methodologies can
contribute to more informed, targeted, and evidence-based policy design in digital asset markets.
Accordingly, policies aimed at regulating sustainable cryptocurrencies should be developed with a
forward-looking perspective that remains sensitive to evolving market conditions.

7. Limitations and future research

While this study provides important contributions by examining the dynamic connectedness structure
between sustainable cryptocurrencies and conventional digital currencies within a Quantile on Quantile
Connectedness framework, it is subject to several limitations. First, the analysis is restricted to
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sustainable cryptocurrencies represented by Cardano, IOTA, and Stellar, and to a single conventional
digital currency, namely Ethereum. Although Ethereum’s central role in the cryptocurrency market
renders this choice methodologically justified, caution should be exercised when generalizing the
findings to other major cryptocurrencies. Second, although the study employs high-frequency data, the
sample period is limited to specific market conditions. Given the rapid structural transformation of
cryptocurrency markets, future studies using longer time spans and covering alternative market regimes
may provide deeper insights into the temporal evolution of connectedness dynamics. In this respect,
extending the data horizon could enhance the robustness and generalizability of the results.

Another limitation relates to the methodological nature of the analysis. While the Quantile on
Quantile Connectedness approach offers strong insights into the direction and intensity of information
and shock transmission, it focuses on connectedness rather than causality. Accordingly, future research
may complement these findings by employing quantile-based causality tests or dynamic structural
models to allow for stronger causal interpretations. In addition, this study focuses primarily on market-
based data and does not explicitly incorporate external factors such as investor behavior, regulatory
developments, or technological innovations. Future research could enrich the analysis by integrating
variables related to environmental awareness, media attention, or regulatory announcements in order to
better understand the underlying mechanisms driving connectedness structures.

An important avenue for future research involves a more comprehensive examination of the internal
interaction networks among sustainable cryptocurrencies themselves. In this study, each sustainable
asset is analyzed only in a bilateral framework with Ethereum. However, employing multivariate and
network-based models could reveal the systemic interdependencies among sustainable cryptocurrencies
and provide a clearer picture of their collective role within the digital financial ecosystem. Finally, from
a methodological perspective, although the Quantile on Quantile Connectedness approach constitutes a
powerful analytical tool, combining it with wavelet-based or frequency-decomposed quantile methods
may yield richer and more nuanced results. Therefore, future studies are encouraged to adopt multi-scale
and hybrid methodological frameworks to further explore the complex dynamics of sustainable digital
assets.
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ARTICLE INFO ABSTRACT

Keywords: Grounding the evaluation of Environmental, Social, and Governance (ESG)
performance in Stakeholder Theory is increasingly vital, as sustainability
ESG - S . . .
Firm performance practices stre_ngthen firms' long-term value creation. _Ac_cor_dlngly, this sFudy
Machine learning examines the impact of ESG performance on key _flnanual |nd!cators for 50_f|rr_ns
XGBoost model listed on the Borsa Istanbul (_BIST) Sustaln_ablllty Index, with data continuity
Stakeholder theory spanning the 20.19-2020 period. The relationship betwee:n ESG scores apd
Financial development performance variables such as ROA, ROE, market capitalisation, financial
leverage, net profit, EBIT, P/B ratio, current ratio, and Tobin’s Q was analysed
using the XGBoost algorithm to overcome the nonlinear limitations of traditional
econometric models. The findings indicate that ESG practices have a more
pronounced effect, particularly on market based indicators (e.g., Market Value
and Tobin’s Q). In contrast, their impact on accounting based indicators (e.g.,
ROA and ROE) remains more limited due to the complexity of internal
operational transitions. By bridging the gap between machine learning and
sustainability literature, this study provides a strategic roadmap for investors
seeking to refine risk assessment through non-financial signals, for corporate
managers aiming to boost market valuation via stakeholder-centric strategies, and
for regulatory authorities in designing standardised ESG frameworks to enhance
transparency and stability in emerging financial markets.

1. Introduction

In recent years, Environmental, Social, and Governance (ESG) issues have attracted significant
attention from investors and researchers. ESG refers to a set of non-financial factors deemed essential
for the long-term sustainability and value creation of businesses. These factors are critical in evaluating
a company's overall performance. In the literature, the concept of ESG is categorised into three main
components: the environmental dimension, the social dimension, and the governance dimension (De
Masi et al. 2021; Fahrullah et al. 2024). ESG scores, utilised by investors and data providers to measure
this performance, gauge the level of data disclosure regarding these areas and are customised for specific
industrial sectors.
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These ESG parameters, which are often perceived as technical measurement tools, are actually
deeply rooted in the normative foundations of Stakeholder Theory, as proposed by Freeman (1994).
Stakeholder Theory offers a comprehensive approach that integrates the technical aspects of business
management with its ethical dimension, thereby opposing the "Separation Thesis," which argues that
business and ethics are distinct domains. From this perspective, the value creation process cannot be
defined solely by financial results; instead, it must be viewed as a multi-faceted process of compromise
based on mutual obligations among all parties—investors, employees, customers, and society—
interacting with the business (Freeman 1994). This theoretical framework suggests that a company’s
true success lies in satisfying all stakeholders, and that ESG activities can create synergy that is
ultimately reflected in market performance.

Recent developments in the field of sustainability have necessitated the evaluation of companies not
only by their financial results but also by their ESG performance. However, despite the growing
importance of sustainability, empirical findings regarding the relationship between ESG and financial
performance remain complex and occasionally contradictory. This leads to a critical research problem:
traditional econometric models often fail to capture the high dimensional and nonlinear relationships
inherent in ESG data, resulting in a gap in the literature regarding the precise predictive power of
sustainability practices on different types of financial indicators. This methodological limitation creates
strategic uncertainty for investors and highlights the necessity for a more robust, analytical approach.

Driven by this motivation and grounded in Stakeholder Theory, this study aims to fill this gap by
analytically examining the effect of ESG scores on firm performance for 50 firms listed in the Borsa
Istanbul (BIST) Sustainability Index between 2019 and 2020. The study formulates the research problem
explicitly by differentiating between "market based " (e.g., Tobin’s Q, Market Value) and "accounting
based" (e.g., ROA, ROE) indicators to determine where ESG performance has the most significant
impact. By utilising the XGBoost algorithm—an innovative machine learning model—this research
seeks to overcome the linear constraints of previous studies and provide a more accurate guiding
framework for investors.

The contribution of this study to the existing literature is twofold. First, it introduces a nonlinear
methodological shift in the BIST context, demonstrating the superior predictive power of machine
learning over traditional methods. Second, it provides empirical evidence that ESG performance is more
strongly reflected in market based valuations—representing external stakeholder perceptions—than in
internal accounting records, thereby offering a new theoretical and practical perspective on how
sustainability value is priced in emerging markets. Following the literature review, the dataset and
methodology are described, the variables used in the analysis are presented, and the findings are
subsequently evaluated.

2. Literature review

Studies on the impact of ESG performance on financial indicators and the predictability of this
relationship have seen a significant increase in recent years. However, the existing literature exhibits a
high degree of fragmentation, with findings ranging from strong positive correlations to neutral or even
adverse outcomes, often depending on the methodology and market context employed. These studies
can generally be categorised into two main groups: those examining the ESG-financial performance
relationship using traditional econometric methods and those testing predictive power using machine
learning algorithms.

Within the first group, traditional empirical studies yield complex and occasionally contradictory
results. For instance, Yavuz (2023) found a positive and significant relationship between total ESG
scores and Return on Assets (ROA) in the context of the Borsa Istanbul. Similarly, Fahrullah et al.
(2024) reported that ESG practices were positively associated with ROA in the Malaysian market. In
contrast to these optimistic findings, some researchers argue that the relationship is strictly limited or
sector specific. Sisman and Cankaya (2021) reported that ESG scores generally had no significant effect
on financial performance in the airline sector. In contrast, Masongweni and Simo-Kengne (2024)
highlighted a critical inconsistency, noting that while total ESG scores might be ineffective, specific sub
dimensions, such as Social and Governance, can exhibit positive relationships. This heterogeneity is
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further supported by Parashar et al. (2024), who emphasised that firm level differences can render the
ESG-ROE relationship insignificant.

From a theoretical standpoint, the divergence in findings is often interpreted through the lens of
Stakeholder Theory. While traditional "shareholder centric" views might see ESG as an added cost,
Wang (2024) and Nguyen et al. (2022) argue that meeting stakeholder expectations through ESG
activities enhances corporate reputation and operational efficiency. A pivotal point of discussion in
recent literature is the debate between the "agency problem" and "stakeholder management" approaches.
Peng and Isa (2020) demonstrated that ESG activities do not generate agency costs; rather, they create
consistent value. Furthermore, Habib et al. (2025) recently demonstrated that green financing acts as a
moderator, suggesting that the ESG-performance link is not direct but influenced by financial structures.

The inconsistency of results in linear models has driven a methodological shift toward machine
learning (ML) to decode nonlinear patterns. De Lucia et al. (2020) and Abdelfattah et al. (2025) found
that ML models, particularly Random Forest, outperform traditional regression in predicting ROA and
ROE across various countries. While some algorithms, such as XGBoost, have demonstrated high
accuracy (91%) in specific markets, like China, the literature remains divided on the universal
applicability of these findings. Dinca et al. (2025) provided a critical counter-narrative, arguing that high
ESG scores do not necessarily increase financial prediction accuracy outside the service sector.
Conversely, Sultana and Zeya (2025) used XGBoost to prove that ESG sentiment effectively reduces
financial risk, highlighting that ML can capture qualitative nuances that traditional econometrics
overlook.

Despite this growing body of work, a clear research gap remains. Most studies in the BIST context
continue to rely on traditional linear models, which fail to account for the multidimensional and
nonlinear interactions between ESG components and diverse financial metrics. Moreover, there is a lack
of comparative analysis that distinguishes between the predictive power of ESG on market based versus
accounting based indicators, using high performance ensemble algorithms such as XGBoost. This study
aims to fill this gap by providing a comprehensive, nonlinear evaluation of BIST listed firms, moving
beyond descriptive analysis to analytically demonstrate how market actors prioritise sustainability
signals compared to internal financial reporting.

3. Data and methodology

This study covers the annual data of 50 firms listed on the Borsa Istanbul (BIST) Sustainability Index,
with data continuity for the period from 2019 to 2020. The selection of this specific time period and
sample is strategically determined by the availability of consistent ESG scores and financial data across
the DataStream platform for BIST companies, ensuring a balanced panel that avoids survivorship bias.
By focusing on the BIST Sustainability Index, the study ensures that the included firms are already
committed to non-linear ESG disclosures, providing a robust basis for analysing the impact of these
practices on financial performance.

The primary objective of this study is to investigate the impact of ESG scores on firm performance
using the XGBoost (Extreme Gradient Boosting) algorithm. The selection of the dependent variables—
ROA, ROE, Tobin’s Q, Market Value, Financial Leverage, Net Profit, EBIT, and P/B Ratio—Is
rigorously grounded in the established literature on corporate finance and sustainability. Specifically,
these metrics are chosen to provide a dual perspective: accounting based measures (ROA, ROE, Net
Profit) reflect internal operational efficiency and historical performance, while market based measures
(Tobin’s Q, Market Value, P/B) capture external investor expectations and the pricing of sustainability
signals. This comprehensive set of variables enables an analytical comparison of how ESG performance
permeates various layers of financial reporting and valuation.

In this context, the dependent and independent variables used in the analysis process, along with their
descriptive information, are presented in Table 1. The rationale for selecting the XGBoost algorithm
over traditional linear methods or other machine learning models is based on several distinct advantages.
Developed by Chen and Guestrin (2016), XGBoost is an ensemble learning method that carries out the
prediction process through a combination of sequential decision trees. Unlike traditional multiple linear
regression, which assumes a linear relationship and is sensitive to multicollinearity, XGBoost's tree
based structure is inherently resistant to multicollinearity issues often found between ESG sub-
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components. Furthermore, XGBoost utilises gradient information and regularisation mechanisms (L1
and L2) to minimise loss functions while preventing overfitting, which significantly enhances the
model's generalisation power compared to simpler models. Its ability to efficiently process high
dimensional datasets and capture complex, nonlinear interactions makes it a superior tool for decoding
the nuanced relationship between sustainability and firm performance.

Table 1. Variables used in the study

Variables Abbreviation Description
Dependent Variables
Return on Assets ROA Net Income / Total Assets
Return on Equity ROE Net Income / Equity
Tobin’s Q TQ (Market Value+Total Debt) / Total Assets
Market Value MV Share Price x Number of Shares
Financial Leverage LEV Total Debt / Total Assets
Net Profit NETPRO Net Income / Net Sales
Earnings Before Interest and Taxes EBIT Net Income + Interest Expenses + Tax Expenses
Market-to-Book Ratio P/B Market Value / Equity
Control Variable
Current Ratio CR Current Assets/Current Liabilities
Independent Variables
ESG Score ESG Environmental + social + Governance
Environmental Score E Environmental Pillar score
Social Score S Social Pillar Score
Governance Score G Governance Pillar Score

The ratios utilised to determine firm performance were selected based on the relevant literature (Velte
2017; Konak and Citak 2018; Gregory 2021; Konak and Tiirkoglu 2022; Bui et al. 2023; Yenisu and
Tirkoglu 2023; Zulnisyam et al. 2025). Financial performance valuation frequently employs metrics
such as Market Value, Financial Leverage, Net Profit, Earnings Before Interest and Taxes (EBIT), tree
based (P/B), Current Ratio (CR), and Tobin’s Q. These metrics provide significant outputs regarding
both accounting based and market based firm performance (Mahfirah et al. 2025).

In this regard, Return on Assets (ROA) is used to measure the firm's general operational efficiency
level as it reflects the ability to generate income through all its assets (Jonnius and Marsudi 2021).
Indicating the effectiveness of economic resources allocated to the business, ROA is calculated by
dividing net income by the total assets used in the business during the reporting period (Al-Sa 2018).
Another variable, Return on Equity (ROE), is calculated by dividing net income after taxes by average
equity. This critical measure reveals the profit generated for each unit of equity after taxes are taken into
account. Furthermore, ROE is a reflection of the operational status of the business and the efficiency
with which invested capital is managed; a higher ROE indicates increased profitability and substantial
business value (Ebaid 2009; Yang et al. 2010; Bui et al. 2023).

Tobin’s Q, used as a measure of firm value, is obtained by dividing the sum of market value, total
liabilities, preferred stock, and minority interest by total assets (Panaretou 2014; Wong et al. 2021). In
evaluation, a value lower than 1 implies that the market values the firm lower than the sum of its assets.
In contrast, a value higher than 1 indicates that the firm's market value exceeds the sum of its assets due
to unrecorded factors such as brand equity (Butt et al. 2023).

Regarding other financial indicators: Market Value refers to the product of share price and total
number of outstanding shares; Financial Leverage is the ratio of total debt to total assets; Net Profit
(Margin) is the ratio of net profit to net sales; EBIT is the sum of net profit, interest expenses, and tax
expenses; P/B Ratio is the ratio of the company's market capitalization to equity; and Current Ratio
(CR), included as a control variable, expresses the ratio of current assets to current liabilities.

The descriptions and formulas for the performance metrics (Root Mean Square Error) RMSE and
Mean Squared Error (MSE) used to evaluate the results of the XGBoost algorithm applied within the
scope of these variables are presented in Table 2 (Saloo et al. 2024).
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Table 2. Performance Measurement Metrics of Developed Models
Performance Criteria Definition Formula

It is a metric indicating the magnitude of error. A
lower RMSE indicates that the model's predictions
are closer to the actual data.

Root Mean Square
Error (RMSE)

RMSE =

It penalizes large errors by taking the average of 1
squared errors; thus, a lower MSE is considered to  MSE = =
indicate a better model. n

Mean Squared Error
(MSE)

3.1. XGBoost model

Developed by Chen and Guestrin (2016), XGBoost (eXtreme Gradient Boosting) is a method
employing an ensemble learning approach, carrying out the prediction process through a combination
of sequential models composed of decision trees. The algorithm utilises gradient information to
minimise the loss function and also leverages the second derivatives (Hessian) of the loss function to
optimise the model more precisely. Furthermore, it incorporates regularisation mechanisms to limit the
problem of overfitting. These features enhance both the generalisation power and the prediction
performance of XGBoost. The method has gained wide acceptance in the literature due to its ability to
process high dimensional datasets efficiently and its relatively fast interpretation (Sarker 2021).

The objective function and the regularization term of the XGBoost algorithm are generally
formulated as follows in Equation (1) (Oukhouya et al. 2024):

L=@®) =) (0u5)+ ) 00 o
k

i

Here, the regularisation term () is expressed as:
1 2
) =VT+§/1IIwII )

In this Equation (2) I represents the differentiable convex loss function, T denotes the number of leaf
nodes in the tree, w represents the score vector (weights) in the leaf nodes, y is the complexity penalty
parameter associated with the number of leaf nodes, A denotes the regularisation parameter.

4. Empirical results

The impact of ESG scores on firm performance was analysed using the XGBoost algorithm on a
dataset of 50 BIST Sustainability Index firms. Prior to analysis, data were normalised, and
hyperparameters were optimised using the GridSearchCV method to ensure model robustness.

4.1. Descriptive statistics and correlation analysis

As shown in Table 3, the average ESG performance of the sampled firms is 72.03. Detailed sub-
component analysis reveals that firms achieve their highest performance in the Social dimension (Mean:
78.83) and their lowest in Governance (Mean: 62.71). Regarding financial metrics, the ROE exhibits
higher average values (22.41%) compared to the ROA (12.22%), although significant heterogeneity is
evident, as indicated by the high standard deviations.

The correlation heatmap (Figure 1) provides critical preliminary evidence: while total ESG scores
correlate highly with their sub-components, their interaction with financial indicators varies
significantly. Specifically, ESG components show stronger visual associations with Market Value (MV)
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and EBIT compared to ratio-based indicators like ROA or Tobin’s Q. This suggests that ESG signals
may have a more immediate reflection on market based metrics than on internal accounting profitability.

In this study, the impact of ESG scores on firm performance was analysed using the XGBoost
algorithm, which utilised 6 years of data from 50 firms listed in the BIST Sustainability Index for the
period from 2019 to 2020. To prevent data leakage, the data were first sorted chronologically.
Subsequently, the data were normalised to avoid biases arising from scaling discrepancies. To maximise
the model's prediction accuracy, hyperparameter optimisation was performed using the GridSearchCV
method. Following the pre-processing steps, the dataset was split into 70% training and 30% testing
sets. Descriptive statistics regarding the variables used in the analysis are presented in Table 3.

Table 3. Descriptive statistics

Variables N Mean Std.Dev. Min 25%(Q1) Median  75%(Q3) Max
TQ 300 0.3206 0.1789 0.0031 0.1712 0.3122 0.4376 0.9039
ROA 300 12.2281 11.2757 -17.6900 6.1400 10.0100 16.4900 93.7900
ROE 300  22.4137 48.4935 -349.1000 8.4100 19.5750 39.7750 242.5600
MV 300 9.8044 1.4542 6.3319 8.7637 9.8947 10.7521 13.0785
FKAL 300 0.3190 0.1798 0.0016 0.1704 0.3112 0.4371 0.9037
ESG 300  72.0312 14.0749 16.0200 64.7850 74.4650 82.0125 94.9800
E 300  71.5387 19.1112 3.4500 62.3375 72.3900 86.1300 99.1300
S 300  78.8312 16.0579 15.4300 70.8100 83.5400 91.3675 97.4000
G 300  62.7110 17.3348 9.0500 52.3750 63.4650 75.8400 94.3100
NETPRO 300 9.5306 17.7234 -94.5300 2.9225 7.9900 13.6675 160.6100
EBIT 300 9,650,724 20,541,540  -6,957,011 801,033 3,268,784 8,792,180 178,861,000
PB 300 2.3877 18.2418 -210.9200 1.0000 1.5050 2.5650 227.9700
CR 300 1.2768 0.6334 0.3100 0.8900 1.1400 1.4225 5.3800

Upon examining the descriptive statistics presented in Table 3, it is observed that the average ESG
performance of the firms is 72.03. When the sub-components are detailed, it is noteworthy that firms
exhibit the highest performance in the Social (S) dimension (Mean: 78.83), followed by the
Environmental (E) dimension (Mean: 71.53). In contrast, the lowest performance occurs in the
Governance (G) dimension (Mean: 62.71).

Regarding financial indicators, Return on Equity (ROE) follows a higher trend with an average of
22.41% compared to Return on Assets (ROA) (12.22%). However, the high standard deviation values
in the ROE and P/B variables, along with the wide range between the minimum and maximum values
(especially the variation in ROE, which ranges from -349.10 to 242.56), indicate significant
heterogeneity among the sampled firms in terms of financial structure and profitability. The fact that the
Tobin’s Q (TQ) average is 0.32 may imply that firms' market values are priced below their replacement
costs. The Current Ratio (CR), included as a control variable, has an average of 1.27, indicating that the
firms' short-term debt repayment capabilities are generally at a reasonable level.

Figure 1 shows the correlation heatmap provides a visualisation of the direction and strength of the
relationships between ESG components and firm performance variables. The colour distributions and
patterns of the matrix clearly reveal the intensity of relationships between variable sets. Upon examining
the heatmap, the most prominent finding is the expected high positive correlation (bright yellow areas)
between the total ESG score and its sub-components (Environmental, Social, Governance). However, a
more critical finding regarding the study's focus is the interaction between ESG scores and financial
indicators. The visual indicates that lighter colour tones (orange/red) dominate the intersection points of
ESG and its sub-components with Market Value (MV) and EBIT variables; conversely, the relationship
with ratio-based indicators such as ROA, ROE, and Tobin’s Q (TQ) remains weaker (dark purple).

This visual evidence supports the thesis, which will be detailed in the analysis section, that ESG
practices have a more pronounced reflection on firms' market value (MV) compared to accounting
profitability (ROA/ROE). Furthermore, while the high correlation (multicollinearity) between ESG sub-
components could lead to biases in traditional models such as linear regression, the XGBoost algorithm
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preferred in this study allows for more reliable predictions by exhibiting resistance to such
multicollinearity issues thanks to its tree based structure.

Correlation Heatmap
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Figure 1. Correlation heatmap between variables
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4.2. XGBoost prediction results

The models were trained using extended feature sets that included lagged variables, firm fixed
effects, scale transformations, and ESG components. For each dependent variable, model success was
evaluated using R?, MSE, and RMSE metrics, and optimal hyperparameters determined via
GridSearchCV were reported (Table 4).

Table 4. Analysis findings and best hyperparameters

Dependent .
Variables R MSE RMSE Best Hyperparameters

TQ 0.7630  0.003375  0.0581

colsample bytree=0.8, learning_rate=0.05, max_depth=3,
n_estimators=400, subsample=0.8

colsample bytree=0.8, learning_rate=0.05, max_depth=5,
n_estimators=400, subsample=0.8

colsample bytree=0.8, learning_rate=0.05, max depth=3,
n_estimators=400, subsample=0.8

colsample bytree=1.0, learning_rate=0.05, max_depth=5,
n_estimators=400, subsample=1.0

colsample bytree=0.8, learning_rate=0.05, max_depth=3,
n_estimators=400, subsample=0.8

colsample bytree=0.8, learning_rate=0.01, max_depth=5,
n_estimators=200, subsample=0.8

colsample bytree=1.0, learning_rate=0.05, max_depth=3,
n_estimators=400, subsample=0.8

colsample bytree=0.8, learning_rate=0.01, max_depth=3,
n_estimators=400, subsample=0.8

ROA 0.4194  55.1672 7.4275

ROE 0.1345 1549.9335 39.3692

MV 0.9982  0.003685  0.0607

FKAL 0.7763  0.005738  0.0757

NETPRO  0.1988 137.1071  11.7093

EBIT 0.8228 0.4693 0.6851

PB 0.6246 0.1037 0.3220

Upon examining Table 4, the high R? values obtained, particularly for MV (0.9982) and EBIT
(0.8228), are noteworthy. In machine learning models, such high explanatory power often raises
concerns regarding the risk of "overfitting". However, the fact that model performance in this study is
reported on the test set rather than the training data, and that hyperparameters were determined under
cross-validation using GridSearchCV, indicates that this result stems from the strong autoregressive
structure of the relevant variables (the power of past data to explain the present) rather than model
memorisation.
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Evaluating the findings by variable, it is observed that the Market Value (MV) model achieved almost
perfect explanatory power. The inclusion of lagged variables and firm fixed effects allowed the model
to capture the structural dynamics of market value. This confirms the theoretical expectation that market
value is highly dependent on past information and historical trends. Similarly, the Tobin Q (TQ) model
(R*=0.763) provided high accuracy. The use of ESG components alongside lagged financial indicators
enabled a robust prediction of the market to book ratio, supporting the view that TQ is a market based
metric reflecting ESG sensitivity.

Conversely, more limited results were obtained for accounting based indicators. While a moderate
explanatory power (R*> = 0.419) was observed for Return on Assets (ROA), it is understood that
operational efficiency is more closely related to internal cost structures and management decisions than
to ESG. The Return on Equity (ROE) and Net Profit (NETPRO) models exhibited the lowest
performance (R*< 0.20). The high volatility of ROE and Net Profit items, along with their excessive
susceptibility to periodic shocks and accounting policies, makes it difficult to predict these variables
using external factors and ESG scores.

In conclusion, the findings reveal that market based performance indicators (MV, TQ, EBIT, LEV)
can be predicted with high accuracy using machine learning models. In contrast, the predictability of
accounting based metrics (ROA, ROE, NETPRO) remains more limited. This divergence is consistent
with views in the literature suggesting that the impact of ESG is concentrated on investor perception and
market valuation rather than financial statements.

5. Discussion

The empirical findings of this study offer significant theoretical, methodological, and inferential
implications for the sustainability literature. The high predictive accuracy of ESG scores regarding
market based variables (MV, TQ, and EBIT) provides strong empirical support for Stakeholder Theory.
The superior performance of market based models suggests that external stakeholders and investors
perceive ESG performance as a critical indicator of long term value creation. This aligns with the
findings of Nguyen et al. (2022), who observed that ESG impacts on Tobin’s Q are significantly higher
than those on ROA or ROE in the S&P 500. Our results confirm this trend in an emerging market context
(BIST), reinforcing the "Stakeholder-Oriented" view that ethical and transparent practices make firms
more attractive to investors, thereby rapidly increasing market valuation. Conversely, the limited
predictability of accounting based metrics (ROA, ROE) suggests that the transition from sustainability
practices to internal operational profitability is a more complex and long-term process. This finding is
consistent with Yavuz (2023) and Liu and Fill (2025), who argued that ESG’s primary impact is on
market perception rather than immediate financial statements.

The inferential implication here is that while ESG may not yield short-term accounting profits, it
serves as a robust signal of financial resilience and lower risk, as supported by Sultana and Zeya (2025).
From a methodological perspective, the success of the XGBoost algorithm in this study demonstrates
the necessity of utilising nonlinear models to decode ESG data. Traditional linear regressions often
suffer from multicollinearity between ESG sub-dimensions; however, XGBoost's tree based structure
effectively manages these dependencies, providing more reliable predictions. The high R? values for
Market Value and EBIT are attributed to the model's ability to capture the strong autoregressive structure
and firm-specific fixed effects. This implies that current financial performance is deeply rooted in
historical trends and structural characteristics, which, when combined with current ESG signals, provide
a robust framework for forecasting future performance. These results challenge the critical view of
Dinci et al. (2025) by demonstrating that, in the BIST context, ESG scores indeed significantly enhance
the accuracy of financial forecasts when modelled using advanced machine learning techniques.

6. Policy implications and future research

The findings of this study offer concrete and actionable insights for regulatory authorities, corporate
decision-makers, and market participants, while also identifying the boundaries of the current research
and directions for future inquiry.
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6.1. Policy implications

For policymakers and regulatory authorities, the high predictive power of ESG signals on market
valuation underscores the need for a more structured and transparent sustainability ecosystem. It is
recommended that authorities, such as the Capital Markets Board of Turkey (SPK), work toward
standardising sustainability reporting practices to eliminate information asymmetry. Uniform reporting
standards would allow investors to access comparable data, leading to more efficient pricing of
sustainability performance in the BIST. To promote the broader adoption of ESG practices, governments
should expand tax advantages, green financing instruments, and credit support. Lowering the cost of
capital for high-performing ESG firms would alleviate the initial cost burden of sustainability
investments and encourage long-term commitment. For corporate decision-makers and managers, the
study demonstrates that ESG is not merely an ethical choice but a strategic tool for value creation. Since
the findings reveal that ESG practices have a pronounced effect on market based indicators, managers
should treat sustainability disclosures as a primary signalling mechanism to attract long-term
institutional investors. Incorporating ESG into the core business strategy can serve as a buffer against
market shocks, enhancing financial resilience and reducing perceived risk among external stakeholders.

6.2. Limitations and future research

Despite its contributions, this study has several limitations that should be acknowledged. The analysis
is limited to 50 firms in the BIST Sustainability Index, for which data continuity is available for the
2019-2020 period. This narrow timeframe may not fully capture the long-term, multi-year lags between
ESG investments and their eventual reflection on internal accounting profitability (ROA/ROE). While
XGBoost provided superior predictive power, the study primarily focuses on numerical financial data
and does not incorporate qualitative factors such as ESG sentiment or text-based disclosures. Future
studies could compare machine learning models, such as XGBoost, with deep learning architectures,
like LSTM or CNN, to determine if these techniques offer even higher accuracy in forecasting financial
trends. Expanding the dataset to cover a longer time series (e.g., 10 years) would help reveal the long-
term "pay-off" period of sustainability practices on accounting based performance metrics.
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ARTICLE INFO ABSTRACT

Keywords: This study aims to evaluate the sustainability performance of countries within a
multidimensional framework, considering not only environmental and social
outcomes but also the level of uncertainty related to sustainability policies. To this
end, ESG-based Sustainability Uncertainty Index (SU/ESGUI), per capita CO:

Sustainability
Sustainability uncertainty

:Enggx emissions, Gini coefficient, renewable energy consumption (API), Environmental
MCDM Performance Index (EPI), Sustainable Development Score (SDG), Human

Development Index (HDI) and Rule of Law Index (WGI) data for 25 countries for
the year 2023 were used. The criteria weights in the study were determined using
CRITIC, an objective method based on the information content of the dataset;
subsequently, the countries' relative sustainability performances were ranked
using the EDAS method. Research findings reveal that the most decisive factors
in distinguishing sustainability performance are the Rule of Law and
Sustainability Uncertainty; Sweden leads with low uncertainty and high ESG
performance, while Russia, China, and the US, which struggle with high
emissions and policy uncertainty, are at the bottom of the list; This situation
demonstrates that environmental improvements alone are not sufficient to achieve
sustainable development goals; improving institutional quality and reducing
policy uncertainty are also critical.

Environmental
sustainability

1. Introduction

The study examines different approaches to assessing countries' sustainability performance based on
the SUI and ESG indicators. Country sustainability will be addressed from a multifaceted perspective,
not only based on existing measurement methods and indicators but also by considering the uncertainty
associated with sustainability. This will provide a more comprehensive discussion of the existing
academic and methodological framework for measuring sustainability.

Today, the global climate crisis has evolved beyond being merely an environmental problem and has
become a multifaceted threat, intertwined with social inequalities, democratic regression, the feasibility
of achieving sustainable development goals, and the impact of international regulations, such as the
Paris Agreement. Therefore, measuring countries' sustainability performance should extend beyond
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environmental indicators to include social and governance elements, such as social justice, human
development, institutional capacity, and income distribution. Given the interconnected and
interdisciplinary nature of sustainability, this holistic approach is crucial for understanding the impacts
on countries' well-being.

Recent academic studies have revealed that the dynamic interaction between the climate crisis,
inequality, and sustainability is becoming increasingly apparent. The literature emphasizes that the
impacts of the climate crisis are not reflected equally across all segments of society, and that
disadvantaged groups (women, children, the elderly, people with disabilities, and low-income
populations) are disproportionately affected by this process. Colakoglu (2023) study also highlights this
situation, revealing that these groups, which contribute least to climate change, are exposed to the
greatest negative impacts, and that children, in particular, are the most vulnerable to the adverse effects
of the climate crisis. This clearly demonstrates that social justice and human rights-based indicators
cannot be ignored in the assessment of sustainability performance.

Multidimensional issues such as sustainable development, environmental quality, human
development, governance capacity and income inequality occupy a central place in today's global policy
agenda; there is an increasing need for indices that can measure the economic, social and institutional
performance of countries in a comparable manner to monitor progress in these areas (UNDP 2024). In
this context, the SDG Index, which tracks holistic progress towards sustainable development goals; the
EPI, which assesses environmental performance across dimensions of air quality, climate, biodiversity,
and resource management; the HDI, which combines life expectancy, education, and income; the WGI,
which cover dimensions such as the rule of law, control of corruption, and democratic accountability;
the Gini coefficient, which measures income inequality; and data sets on production-related CO-
emissions stand out as key indicators that enable multidimensional analyses of countries' sustainability
and development performance (Wolf et al. 2022; Kaufmann et al. 2010; World Bank 2024b;
Friedlingstein et al. 2025). However, each of these indicators ranks countries along a specific dimension;
therefore, they do not provide a holistic measurement framework encompassing all elements of
sustainability. Each index prioritizes its own focus, making comprehensive sustainability analysis
difficult.

On the other hand, sustainability is a multifaceted concept that requires the simultaneous
consideration of economic growth, environmental protection, and social well-being (UN 2015).
Therefore, the applicability and effectiveness of sustainability policies are closely related not only to
their content but also to the level of uncertainty surrounding these policies (Baker et al. 2016). In recent
years, the impact of uncertainty regarding sustainability policies on investment decisions, market
expectations, and perceptions of country risk has been increasingly discussed (Hu et al. 2023; Liang et
al. 2022; Wang et al. 2023). The SUI, developed in this context, is a crucial tool that facilitates the
systematic monitoring of the level of uncertainty surrounding sustainability policies in countries (Ongan
et al. 2025).

This study aims to analyze countries using a CRITIC-EDAS-based Multi-Criteria Decision-Making
(MCDM) approach, combining indicators such as SUI, CO: emissions, the Gini coefficient, API, EPI,
SDG, HDI, and WGI, to assess their sustainability performance from a multidimensional perspective.
This will provide a more objective, comparable, and analytical framework for presenting the relative
sustainability performance of countries.

One of the unique contributions of this study is its joint assessment of sustainability performance not
only through level indicators (SDG Index, EPI, HDI, WGI, Gini, CO., etc.) but also through the SUI
(ESGUI) index, which reflects the extent of uncertainty related to sustainability policies. While the
number of SUI/ESGUI-based studies in the literature is quite limited, this study integrates this index
into a MCDM approach to analyze countries' sustainability performance holistically along the "level +
uncertainty" axes. Thus, while traditional indicators reflect only environmental, social, and institutional
outcomes, the SUI (ESGUI) index integrates policy uncertainty, which shapes these outcomes, into the
model. In this respect, the study offers a unique contribution to the literature as one of the rare empirical
applications that considers sustainability performance and sustainability uncertainty within the same
framework.

In this regard, the subsequent sections of the study are structured as follows: The following section
summarizes the relevant literature focusing on indicators such as sustainability uncertainty,
environmental performance, income inequality, and governance, and outlines the theoretical framework
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of the study. In the methodology section, the scope of the SUI, CO2, Gini, API, EPI, SDG, HDI, and
WGI data sets used in the analysis is defined, the rationale for the selection of criteria is explained, and
the application steps of the integrated CRITIC-EDAS approach are detailed. The findings section
presents the relative sustainability rankings of countries, along with sensitivity analyses supported by
Monte Carlo simulations that test the model's consistency. The conclusion section discusses the findings
in comparison with the existing literature, develops concrete recommendations for policymakers, and
provides directions for future studies.

2. Literature review

Multidimensional indicators, including sustainability uncertainty, environmental pressure, income
distribution equity, renewable energy transition, environmental performance, sustainable development
achievement, human development level, and rule of law, were used to analyze countries' sustainability
performance. To this end, Table 1 systematically summarizes the definitions of each criterion used in
the study: SUI/ESGUI, per capita CO2 emissions, Gini index, API, EPI, SDG, HDI, and WGI, along
with selected empirical studies based on these indicators. This provides the theoretical basis for the
multidimensional sustainability framework used in the analysis.

Table 1. Criterion-Based Literature Table

Criterion Definition Selected Study

Ongan et al. (2025) utilize a new indicator called N-
ESG, which is derived by subtracting ESGUI from ESG
scores; thus, they argue that the ESG performance of
firms/countries should be adjusted to account for
. .. sustainability uncertainty. ESGUI is used here as a
;Fil;posEiiGlﬁ dexls deielot;:ctl-nignnnglebaﬁerg quantitative measure of sustainability uncertainty.
. L . Nyakurukwa et al. (2025) examine the global and

countries' sustainability-related uncertainty - . . o
levels. First proposed by Ongan et al. (2025), regional spread of ESG pohcy u.ncer.t'c.nnty, utlhz'lng
the index calculates three sub-indices based ESGUI as a new composite sustainability uncertalr}ty
on the frequency of keywords related to mdlcatqr o apalyze how the deyeloped ESG policy
environmental (E), social (S), and uncertainty 1nd1cato.rs are disseminated across
ESGSUI - governance (G) selected from the monthly de\{eloped and emerging markets. Zeren. et al. (2025),
ESG-based country reports of the Economist taklng. ESGUI as the dependent yarlable for G7
Sustainability Intelligence Unit (EIU). An uncertainty sub- eouptrles, analyze t.he macroeconomic, .ﬁnanc1al, a nd
Uncertainty index derived from phrases such as 1n§t1tut10nal determmat}ts of sustainability uncertainty
Index "uncertain/uncertainty" in the same reports using asymmetric Fogrler methods."Anbea ot al.. (M)
is added. These four components are use ES.GUI as an 1nd1eetor of ESG suetalnablhty
normalized and scaled to a range of 0-100 uncertainty" while examining the.rela.tl.ons.hlp between
producing monthly ESGUI series for 2 5’ energy preferences and ESG sustainability in developed
countries. Global ESGUI indices are also  CoonOmies. .The.y test tbe effecte N f energy preferegces
generated using equally weighted and GDP- and educatlon/lptegratlon policies on suetamabll_lty
iohted averages of the country series uncertainty. Gaies (2025) analyze the interaction
wellg a8 ) Y between financial instability and climate risks using the
(policyuncertainty.com). U.S. ESG-based Sustainability Uncertainty Index
(ESGUI) series for the United States, demonstrating that
ESGUI serves as a macro uncertainty indicator that can
reveal the sensitivity of financial markets to

sustainability shocks.

) Per capita CO: emissions are used as one of the main
Per capita CO: emissions are measured as  yariables representing environmental pressure in global
the ratio of carbon dioxide emissions from  sustainability and competitiveness studies; for example,
fossil fuel consumption and cement Agan (2024) uses the per capita CO: series from WDI in
production to the country's population in his analysis of global sustainable competitiveness and
CO:-CO: environmental sustainability. In addition, in multi-

Emission per
capita

tonnes per capita. This indicator, reported in
the World Bank's World Development
Indicators (WDI) database, is designated by
the code EN.ATM.CO2E.PC is considered a
key measure of environmental pressure
(World Bank 2024a).

criteria or panel-based studies, such as those by Guijarro
and Poyatos (2019) and Agan (2024), CO: is considered
an integral component of composite indices that evaluate
the environmental performance of countries. Akpolat
(2024) examines the relationship between CO: per capita
emissions, fossil, API, and sustainability using panel
data. Rosa and Jadotte (2023) analyzes the determinants
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of per capita CO: emission inequality among developing
countries. Liu et al. (2023) examine the dynamics of
infrastructure development, HDI, and per capita CO:
emissions. Shabani (2024) examines the impact of API
and human capital on CO: emissions using panel data,
showing that renewable energy reduces emissions while
human capital strengthens this relationship. Nguyen et
al. (2025) analyze the impact of digital infrastructure and
renewable energy on CO: emission intensity for 217
countries, finding that the growth of digital
infrastructure and renewable energy reduces emission
intensity. Pal et al. (2025) demonstrate the short- and
long-term effects of economic indicators, API, and HDI
on carbon emissions in selected Asian countries using
panel ARDL.

GINI - Poverty

The Gini index is an indicator measuring the
degree to which income distribution deviates
from perfect equality, taking values between
0 (perfect equality) and 100 (perfect

The Gini index is widely used as a basic measure of
income distribution equity in studies of sustainable
development and inequality. For example, Makhlouf
(2023) examines the income inequality dynamics of 34
countries for the period 1960-2020 using the Gini index
and discusses the relationship between inequality trends
and the Sustainable Development Goals. World Bank
data are also used as a standard data source in empirical
analyses of the inequality dimension within the
framework of SDGs (Makhlouf 2023; World Bank

and Income inequality). It is reported by the World Bank  2024b). Haddad et al. (2024). Discusses the
Inequality as "Gini index (World Bank estimate)" with  interpretation of the Gini coefficient in the context of the
Index the code SLPOV.GINL the index is World Bank "new inequality indicator". Bi (2020)
calculated using the Lorenz curve of income evaluates the sustainable development performance of
. o countries by integrating the Gini coefficient into the

or consumption distribution based on . . .
human sustainable development index. Dvulit et al.
household survey data (World Bank 2024b).  5>5) examine the relationship between SDG 3 (Health
and Well-being) and SDG 10 (Reduced Inequalities) for
the EU and Ukraine in the period 2009-2021, using
classification, clustering, and regression analyses on the
Gini coefficient. The results show that a decrease in

income inequality improves health indicators.

This indicator is widely used in the energy transition,
green growth, and environmental sustainability literature
to measure the level of countries' transition to low-
carbon energy systems. Maji and Sulaiman (2019) use
this indicator when analyzing the relationship between
API and economic growth in West African countries. Xu
and Gallagher (2022) use API rates in their study
APl is a percentage indicator that shows the  examining the role of development finance institutions
share of renewable energy sources (such as in green energy transition. Liao (2023) use the API rate
API - hydro, wind, solar, and biomass) in total ~as the main indicator for the sustainable impacts of green
Renewable final energy consumption. It is presented as ~ S¢T8Y projects. Chuqng (2025) analyze the relationship
Energy "APT (% of total final energy consumption)” between globalization, renewable energy, and
. . " sustainable development for 104 countries, with API
Consumption in the World Bank WDI database with the serving as the primary determinant. Shabani (2024)
code EG.FEC.RNEW.ZS (World Bank examines the relationship between renewable API
2024c). energy consumption and CO:, and by including human
capital in the model, they emphasize the emission-
reducing effect of increasing the renewable energy share.
Nguyen et al. (2025) test the role of API in reducing CO:
emission intensity separately for countries in different
income groups. Pal et al. (2025) confirm that API
significantly reduces carbon emissions in the long run,
as indicated by panel ARDL and FMOLS/DOLS results.
The EPI is a composite index that The EPI is frequently used in comparing countries'
EPI - summarizes  countries'  environmental environmental performance and in multi-criteria
Environmental performance on a scale of 0-100, combining assessments focused on environmental sustainability.
Performance more than 50 indicators across areas such as  Guijarro and Poyatos (2019) utilize EPI components
Index climate change, environmental health, and when evaluating countries' environmental performance

ecosystem vitality. Published biannually by

using a MCDM approach; Ekinci and Oturaker (2025)

197



A. Alici et. al.

Journal of Sustainable Digital Futures 2025 1(2) 194-216

the  Yale  University Center  for
Environmental Law and Policy and
Columbia University, the EPI is a

comprehensive measure that shows how
their
environmental policy goals (Block et al.

well countries are approaching

2024; Yale Center for Environmental Law
and Policy, 2024).

analyze Turkey's environmental performance using the
EPI index values. Recently, the EPI has become a
different
normalization and weighting scenarios has been debated
(Ekinci and Oturake1 2025; Guijarro and Poyatos 2019).
Pinar (2022) analyze the EPI's sensitivity to different
normalization and weighting methods. Wendling et al.

reference index whose sensitivity to

(2022) propose a framework for explaining countries'
environmental performance based on the EPI. They
analyze the effects of determinants such as governance,
income level, and structural factors on the EPI and
discuss how the EPI can be used for policy design.

The SDG Index is a composite index that
combines numerous social, economic and
environmental indicators related to the 17

The SDG Index has become one of the main reference
indicators for comparatively analyzing country progress
towards the SDGs. Sachs et al. (2023) relate the index to
global policy recommendations within the framework of
the "SDG Stimulus", while many empirical studies use
SDG scores in conjunction with governance indicators,
income inequality, or environmental indicators to

examine the determinants of countries' sustainable

SDG - . development performance (Sachs et al. 2023; Blancas et
. Sustainable Development Goals to produce . .
Sustainable ) . al. 2025). The WGI analyzes the relationship between
a SDG and ranking for countries on a scale s
Development . . governance indicators and SDG performance and the
of 0-100. It is prepared by the Sustainable . .
Score . impact of governance quality on SDG achievement
Development Solutions Network (SDSN). . . .
. .. (Bisogno et al. 2025). In various studies of the SDSN,
Sustainable Development Report series is . o
the SDG Index is used as a core indicator for
updated every year (Sachs et al. 2023). . . .
comparatively  evaluating country sustainability
performance. Dvulit et al. (2025) examine the interaction
between SDG 3 and SDG 10 by combining SDG
indicators with the Gini coefficient; It clusters countries
according to both their level of SDG achievement and
their level of inequality.
The HDI is one of the most widely used composite
indicators in discussions of human development,
inequalities, poverty, and sustainable development. The
UNDP Human Development Report 2023/24 interprets
the HDI as a key indicator of global inequalities and
development bottlenecks, referred to as "gridlocks"
(UNDP 2024a). Many empirical studies examine the
relationships  between human development and
The HDI is a composite index that environmental anld e.con.omic sustainability by us.in.g the
. . . HDI together with indicators such as CO: emissions,
summarizes average achievement in three e .
. ) renewable energy use or institutional quality. Castells-
key dimensions of human development: a . ,
. . Quintana and Loépez-Bazo (2019). Analyze the
HDI — Human long and healthy life, education, and a decent . . . . .
.. . relationship between income inequality and human
Development standard of living. It is calculated on a scale . . .
. . development using HDI data. Liu et al. (2023) examine
Index of 0-1 based on the geometric mean of life

expectancy, education (expected and mean
years of schooling), and GDP per capita
(GNI, PPP) (UNDP, 2024).

the interaction between infrastructure development,
carbon emissions and HDI with panel data. Kozal
(2024). Analyze environmental sustainability indicators
using CO2, renewable energy and HDI together. Pal et al.
(2025) include the HDI among the determinants of
climate change, finding that economic growth and
industrialization, as well as human development, have a
complex relationship with carbon emissions, and that
renewable energy and human development can
contribute to a more sustainable emission pathway in the
long run. Nguyen et al. (2025) also use socioeconomic
variables such as the HDI and structural indicators as
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control variables in their model explaining CO- emission
intensity.

The rule of law indicator within the WGI is widely used
in the sustainable development and institutional
economics literature to measure the quality of

The "Rule of Law (RL.EST)" indicator, part governance and the strength of democratic institutions.

of the World Bank's Worldwide Governance
Indicators (WGI), is a composite governance

index that measures public perceptions of . . . .
. . . environmental policy effectiveness, or economic growth
trust in and compliance with rules across

WGI - Rule of . . (Kaufmann et al. 2010; World Bank 2024d). Bisogno et
dimensions such as contract enforcement, R . .
Law Index . . . . al. (2025) examine the relationship between WGI
property rights, police and judicial quality, . . . .
. . . indicators and SDG performance, testing the impact of
and the risk of crime and violence. The . .
o . the rule of law and other governance dimensions on
indicator ranges from approximately —2.5 to . . .
sustainable development. Mahmutovi¢ and Alhamoudi
+2.5 (Kaufmann et al. 2010; World Bank . . .
2024d) (2024) examine the relationship between the rule of law
and sustainable development within a conceptual and
normative framework, arguing that rule of law

Kaufmann et al. (2010) provide a detailed explanation of
the WGI methodology, and many subsequent studies
have linked rule of law scores to SDG performance,

institutions are fundamental to the achievement of the
2030 Agenda and the SDGs.

When the studies summarized in the table are considered as a whole, it is evident that the literature
constructs the sustainability profiles of countries mostly based on fragmented indicators. Studies
focusing on CO2 emissions, API, and environmental performance (Akpolat 2024; Shabani 2024; Pal et
al. 2025; Nguyen et al. 2025; Wendling et al. 2022; Guijarro and Poyatos 2019; Ekinci and Oturakg1
2025) focus primarily on environmental pressure and energy transition, while the inequality and human
development literature (Makhlouf 2023; Bi 2020; Castells-Quintana and Lopez-Bazo 2019) deepens the
social dimension through the Gini and HDI, while often leaving environmental and institutional
indicators in the background.

Although SDG and governance-based analyses (Sachs et al. 2023; UN DESA 2023; Bisogno et al.
2025; Dvulit et al. 2025) link sustainable development achievement and WGI-based institutional quality,
these studies generally use ready-made composite indices (SDG Index, WGI) directly and focus on two-
to three-dimensional relationships rather than establishing a detailed set of criteria including CO-, EPI,
inequality and human development. A newer vein, the ESG-based sustainability uncertainty literature
(Ongan et al. 2025; Nyakurukwa et al. 2025; Gaies 2025; Zeren et al. 2025), treats ESGUI either as a
dependent variable (G7, financial instability, etc.) or as a single uncertainty indicator alongside certain
financial/energy indicators; Studies that embed ESGUI into a multi-criteria country sustainability
ranking, along with CO-, Gini, API, EPI, SDG, HDI and WGI, remain extremely limited.

This study offers a complementary and distinctive aspect to this literature on two levels. First, it
combines sustainability uncertainty (ESGUI/SUI), per capita CO: emissions, income inequality (Gini),
API, EPI, SDG, HDI, and WGI indicators into a single, consistent set of criteria to assess countries'
sustainability performance within a multidimensional framework encompassing environmental, social,
institutional, and uncertainty dimensions. Second, unlike previous studies, where composite indices such
as the SDG Index or EPI are mostly based on normative or expert-based weighting approaches (Pinar
2022; Sachs et al. 2023), this research determines the criteria weights using CRITIC, an objective
method based on the information content of the data.

It then ranks countries based on positive and negative deviations from the mean solution using the
EDAS method. Thus, indicators generally used in regression or wavelet/measurement models in the
literature, especially ESGUI, are positioned here for the first time as components of an objectively
weighted multi-criteria sustainability index; countries are evaluated within a transparent and comparable
MCDM framework, taking into account both the level of sustainability and sustainability uncertainty,
and in this respect, the study offers an original contribution that distinguishes it from the existing
literature.
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3. Methodology

To assess the sustainability performance of countries, an analysis was conducted using Multi-Criteria
Decision Making Techniques (MCDM) using data from 2023. The year 2023 was chosen because the
most up-to-date data regarding these countries is concentrated in that year. In this study, the CRITIC and
EDAS techniques from MCDM were used in two stages. In the first stage, the criteria were weighted
using the CRITIC method. In the second stage, the alternatives were evaluated using the EDAS method.
Furthermore, the criteria used in the study, their sources, the direction of preference in the normalization
process, and the codes are shown in Table 2. Table 3 shows the countries and their codes used in the
study.

Table 2. Criteria used in the study

Criteria Explanation Preference Year Source
SUI ESG-Based Sustainability Uncertainty Index Min 2023 ESGUI'
CO: CO: Emissions per Capita Min 2023 Diinya Bankasi

GINI Poverty and Equality Index Min 2021-2023* Diinya Bankasi
API Renewable Energy Consumption Max 20218 Diinya Bankasi
EPI Environmental Performance Index Max 2024™ Yale University
SDG Sustainable Development Score Max 2023 SDSNf
HDI Human Development Index Max 2023 UNDP#
WGI Rule of Law Index Max 2023 Diinya Bankasi

Table 3. List of countries in the study
Countries Code Countries Code Countries Code Countries Code Countries Code

Australia Al China Ab India All  Netherlands  Al6 Spain A21
Belgium A2 Colombia A7 Ireland Al12 Pakistan Al7 Sweden A22
Brazil A3 France A8 Italy Al3 Russia Al8 UK A23
Canada A4 Germany A9 Japan Al4 Singapore A19 us A24
Chile A5 Greece A10 Mexico Al5 S Korea A20 Vietham A25

3.1. Selection of weighting method

In this study, to determine the most appropriate weighting method that will accurately reflect the
importance of critical variables such as sustainability uncertainty (SUI) and environmental pressure
(CO2) within the dataset, which form the main axis of the study, and ensure the consistency of the
analysis results; the weight coefficients produced by the Entropy, MEREC, LOPCOW, and CRITIC
methods, which are widely used in the literature, were comparatively evaluated. The comparison of the
weighting methods related to these methods is presented in Table 4.

The Entropy method focused on the irregularity in the distribution of data but assigned a negligible
weight (0.005) to the SUI (Uncertainty) criterion, which is the most critical variable in the study. This
situation demonstrates that the Entropy method is insufficient in reflecting the emphasis on uncertainty
in this dataset.

The MEREC method has assigned a disproportionately high weight (0.285) to the WGI criterion.
The dominance of a social indicator in this analysis has overshadowed environmental and uncertainty
factors.

T https://www.policyuncertainty.com/sustainability _index.html

¥ It was determined based on data shared by countries in recent years (2021-2023).
§ The latest data was shared in 2021.

™ The year 2024 was chosen because it is published biennially.

 Sustainable Development Solutions Network

¥ United Nations Development Program
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The LOPCOW method, on the other hand, has shifted the weight significantly towards general
development indicators such as HDI (0.172) and SDG (0.169). These risks transforming the analysis
into a "Classic Development Ranking".

The CRITIC method is the only method that assigns the highest weights to the SUI (Uncertainty)
criterion (0.166) and CO: Emissions (0.168), which are the main themes of the study. CRITIC balances
the weight of repetitive information by considering the correlation between data (such as the SDG-HDI-
WGI relationship) and highlights the SUI criterion, which carries more unique information.

To preserve the decisiveness of the "Uncertainty Index" concept emphasized in the study's title and
to ensure environmental/social balance most rationally, using the CRITIC weighting method would be
the most appropriate choice.

Table 4. Comparison of weighting methods

Criteria Code CRITIC MEREC LOPCOW Entropi
ESG-Based Sustainability Uncertainty Index SUI  0.166(2) 0.089 (7) 0.094 (7) 0.005 (8)
CO: Emissions per Capita CO: 0.168 (1) 0.106 (3) 0.113 (6) 0.145 (4)
Poverty and Equality Index GINI  0.119(5) 0.091 (6) 0.144 (3) 0.126 (6)
Renewable Energy Consumption API 0.132(3) 0.153(2) 0.073 (8) 0.176 (1)
Environmental Performance Index EPI 0.110 (6)  0.099 (4) 0.119 (4) 0.132 (5)
Sustainable Development Score SDG  0.078 (8) 0.086(8) 0.169 (2) 0.127 (7)
Human Development Index HDI  0.100(7) 0.091 (5) 0.172 (1) 0.127 (6)
Rule of Law Index WGI  0.128 (4) 0.285(1) 0.116 (5) 0.163 (2)

Total 1.000 1.000 1.000 1.000

3.2. Selection of ranking method

In this study, the EDAS (Evaluation Based on Distance from Average Solution) method was
employed for ranking countries based on their sustainability uncertainty and ESG performance
(Keshavarz Ghorabaee et al. 2015). Methods such as TOPSIS and VIKOR, frequently used in the
MCDM literature, evaluate alternatives based on their distance from the "ldeal" and "Anti-Ideal"
endpoints. However, the SUI and CO: Emission data, which are the focus of this study, have the potential
to contain high variation and outliers between countries. Methods based on the ideal point can be overly
influenced by these outliers, causing ranking deviations. In contrast, the EDAS method performs the
evaluation based on the "Average Solution™ rather than outliers. This algorithm, which calculates the
positive (PDA) and negative (NDA) deviations of alternatives from the average, mitigates excessive
fluctuations in the dataset and provides a more robust and consistent ranking in an uncertain
environment. Furthermore, preliminary analyses have determined that the EDAS method provides the
highest correlation with other ranking techniques (see Table 5), statistically validating the method's
validity. Table 6 presents a comparative evaluation of the applied MCDM techniques, highlighting the
ranking results for each country.

Table 5. Correlation results
ARAS WASPAS AROMAN MABAC Multimoora EDAS Cradis  Average

ARAS 1 0,552 0,697 0,684 0,681 0,853 0,328 0,816
WASPAS 0,552 1 0,493 0,504 0,484 0,602 0,320 0,676
AROMAN 0,697 0,493 1 0,97 0,714 0,857 0,508 0,899
MABAC 0,684 0,504 0,97 1 0,776 0,868 0,604 0,928
Multimoora 0,681 0,484 0,714 0,776 1 0,771 0,704 0,873
EDAS 0,853 0,602 0,857 0,868 0,771 1 0,504 0,933
Cradis 0,328 0,320 0,508 0,604 0,704 0,504 1 0,663
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Despite the methodological differences between TOPSIS, which is based on the ideal solution, and
VIKOR, which is based on the compromise solution, the fact that the EDAS method achieves high
compatibility with both approaches demonstrates that the method's "Average Solution" approach
provides the best "Consensus" for this data set. The EDAS method not only produced results consistent
with other methods but also provided the most balanced ranking by preventing extreme values derived
from SUI (Uncertainty) data from manipulating the ranking.

Table 6. Comparison between methods
Country Code ARAS WASPAS AROMAN MABAC Multimoora EDAS CRADIS Average

Australia Al 10 6 14 13 12 12 18 11
Belgium A2 12 5 7 6 10 8 10 7
Brazil A3 14 21 12 14 22 14 23 18
Canada A4 8 17 16 15 3 11 19 13
Chile A5 18 10 19 20 8 15 2 14
China Ab 23 22 23 22 17 23 12 21
Colombia A7 21 14 22 23 23 21 22 23
France A8 7 24 6 5 4 6 1 6
Germany A9 3 3 3 3 2 4 11
Greece Al10 20 12 11 10 11 19 5 12
India All 9 9 5 12 15 10 21 10
Ireland Al2 6 4 8 7 4 5 9 4
Italy Al3 19 20 9 9 12 18 6 15
Japan Ald 11 7 10 8 14 7 13 8
Mexico Al5 24 15 21 21 24 24 24 24
Netherlands Al6 2 18 4 4 6 3 8 5
Pakistan Al7 5 13 24 25 21 22 20 20
Russia Al8 25 23 25 24 25 25 15 25
Singapore  Al19 13 11 18 18 18 9 14 16
S Korea A20 17 16 17 16 18 16 16 17
Spain A21 15 8 13 11 6 13 7
Sweden A22 1 1 1 1 1 1 4 1
UK A23 4 2 2 2 9 2 3
us A24 16 19 20 19 16 17 17 19
Vietnam A25 22 25 15 17 20 20 25 22

3.3. CRITIC and EDAS multi-criteria decision-making methods

In the MCDM literature, the CRITIC (Criteria Importance Through Intercriteria Correlation) method is
an objective weighting approach that determines criterion weights entirely based on data. The method
first calculates the standard deviation value through the normalized decision matrix to measure the
discriminative power of each criterion, then evaluates the information overlap between criteria using
Pearson correlation coefficients. Thus, criteria that are both highly variable (strongly distinguishing
decision alternatives) and highly unrelated to other criteria are considered to have higher information
content and, accordingly, receive higher weights. Due to these characteristics, the CRITIC method
reduces decision-maker subjectivity by allowing the data structure to determine the importance of
criteria and is widely used in the literature, particularly for multidimensional problems such as financial
performance, sustainability, and supplier selection (Diakoulaki et al. 1995; Zardari et al. 2015;
Keshavarz Ghorabaee et al. 2015). Table 7 details the solution steps of the CRITIC method.
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Table 7. CRITIC method solution steps
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No Equation Explanation
;= %y x}min Benefit
0 " X — xmin The decision matrix is normalized according to the
Xy benefit/cost characteristics.
rij = x—max_xmin Cost
J J
1 . . - .
Ti= ZZ{L 147 Using the normalized decision matrix, the mean and standard
) " deviation of each criterion are calculated. The standard
= |Lym 0 .32 e
Q= m 2izq(rij-17) deviation indicates the criterion's discrimination.

i (rij—rj)-(rir-r1)

Pjk =
JEm 2 S ke mo?

)

The linear relationship between the criteria is measured by the
Pearson correlation coefficient. This determines the extent to
which a criterion conveys similar information to other criteria.

n

@ G =0 ) (1=

The total amount of information carried by each criterion (C;)
is calculated by combining the criterion's standard deviation

k=1 with its uncorrelatedness (1 — pj).
C The CRITIC criterion weights are obtained by normalizing the
(5) wj = "—}C information content of each criterion. The total weight is equal
j=17 to 1.
Table 8. EDAS method solution steps
No Equation Explanation
oy
Ay, =217 . .
(6) J m Calculating the Average Solution
PDA; = max( 0,(Xij— AVj)) .
) v AV ’ Calculating the Positive Distance Matrix from the Average
PDA, = MOV~ X)) Solution
v AV
. max(0AV)= Xij)). -
3 NDA; s NDAy Calculating the Negative Distance Matrix from the Average
(®) max(0,(X;;— AV})) Solution
AV]'
9) SP;=Y7L,w; * PDA;; Calculating the Sum of Positive Distances
(10) SN; = X7 wj x NDA;; Calculating the Sum of Negative Distances
(11) NSP; = — Normalized Sum of Positive Distances
max(SP;)
_ SN; . . .
(12) NSN; = I- max(SNp) Normalized Sum of Negative Distances
(13) ASi= % (NSP; + NSN;) Calculating the Final Value

The EDAS (Distance-Based Evaluation from the Average Solution) method, proposed by Keshavarz
Ghorabaee et al. (2016), is a relatively new and robust methodology for solving MCDM problems. The
basic philosophy of the method is that the attractiveness of an alternative is determined by its
performance across all criteria and its distance from the average solution. EDAS calculates the Positive
Distance and Negative Distance matrices of the other options relative to the average solution. For benefit
criteria, a value above the average creates a positive distance, while for cost criteria, a value below the
average creates a positive distance. These two distances are summed and normalized using the criteria
weights. Finally, the final evaluation score obtained by combining the normalized positive and negative
distances is used to rank the alternatives. This method is a simple and computationally efficient tool that
has proven particularly effective in highly competitive evaluation scenarios where deviations from the
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criteria's average are significant (Keshavarz Ghorabaee et al. 2016a). Table 8 details the solution steps
of the EDAS method.

EDAS is recommended as an alternative approach to classical methods such as TOPSIS and VIKOR
in both theoretical and applied studies because it does not require the determination of ideal and anti-
ideal solutions, captures relative performance compared to the average, and can be adapted to different
extensions (fuzzy, intuitionistic fuzzy, pictorial fuzzy, etc.) (Keshavarz Ghorabaee et al. 2015; Yalgin
and Uncu 2019; Torkayesh et al. 2023).

4, Results

All CRITIC and EDAS stages for each country are tabulated. The full analysis processes for other
MCDM methods (MABAC, ARAS, WASPAS, AROMAN, etc.) are not provided. Relevant tables are
available upon request. In the first stage, the criteria are weighted using the CRITIC method. The initial
decision matrix, created before the weighting process, is presented in Table 9.

Table 9. Decision matrix

Code/Criteria SUI CO: Gini API EPI SDG HDI WGI
Al 28,59 14,5 33,8 12,3 63,1 77,6 0,958 2,713
A2 36,79 7,2 26,8 11,7 66,8 80,5 0,951 2,485
A3 21,39 2,3 51,6 46,5 53 73,7 0,786 0,881
A4 42,69 13,9 31,1 23,8 61,1 79,3 0,939 2,663
A5 46,57 39 43 24,2 49,6 78,2 0,878 1,815
A6 31,85 8,6 36 15,2 35,4 74,2 0,797 1,15
A7 37,79 1,7 53,9 29,7 49,7 70,3 0,788 0,732
A8 36,19 4,1 31,8 16,2 67 83,2 0,92 2,371
A9 33,89 7 32,4 17,6 74,5 83,6 0,959 2,741
Al0 33,76 51 33,4 21,5 67,3 79,2 0,908 1,403
All 21,76 2,1 25,5 34,9 27,6 66,7 0,685 1,378
Al2 43,98 6,5 29 12,7 65,8 78,7 0,949 2,824
Al3 31,36 52 34,3 17,5 60,3 80,2 0,915 1,58
Al4 38,06 79 32,3 8,8 61,4 80,2 0,925 2,726
Al5 22,11 35 43,5 13 44,2 70,8 0,789 0,384
Al6 36,59 6,5 25,7 12,2 66,9 80 0,955 2,833
Al7 40,49 0,8 29,6 41,6 25,5 56,9 0,544 0,33
Al8 17,00 11,9 33 3,5 46,7 74,1 0,832 0,002
Al19 36,41 8,8 43,5 1,1 53 70 0,946 2,943
A20 32,64 11,4 32,9 3,6 50,6 78,1 0,937 2,439
A21 43,09 4,5 33,4 19 64 80,8 0,918 2,013
A22 38,98 3,5 29,3 57,9 70,3 86,1 0,959 2,794
A23 28,67 4,5 32,4 12,2 72,6 81,8 0,946 2,588
A24 32,13 14,3 41,8 10,9 57,2 75,1 0,938 2,518
A25 21,61 3,5 36,1 24,2 24,6 73,1 0,766 1,105
Max 46,57 14,50 53,90 57,90 74,50 86,10 0,96 1,75
Min 17,00 0,80 25,50 1,10 24,60 56,90 0,54 0,00

Table 9 presents the raw dataset on countries' sustainability performance, showing each country's
absolute position on indicators such as sustainability uncertainty (SUI), CO. emissions per capita,
income inequality (Gini), renewable energy use (API), environmental performance (EPI), SDG, human
development level (HDI), and rule of law (WGI). The table presents a multidimensional sustainability
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profile that combines both cost (SUI, CO:, Gini) and benefit (API, EPI, SDG, HDI, WGI) indicators
within a single framework, highlighting significant differences across countries based on environmental,

social, and governance factors.

In Table 10, the raw indicators in the decision matrix have been normalized to account for cost-
benefit considerations, making variables with different scales and units comparable. Moving the criteria
to a range of 0 to 1 after normalization provides a clearer picture of relative positions across countries;
while there is particularly high variation in the WGI, EPI, SDG, and Gini indicators, the distribution is
relatively more balanced for some criteria. This step provides the necessary statistical basis for
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calculating criteria weights based on their information content using the CRITIC method.

Table 10. CRITIC normalized decision matrix

Code/Criteria SUI CO: Gini API EPI SDG HDI WGI
Al 0,61 0,00 0,71 0,20 0,77 0,71 1,00 1,55
A2 0,33 0,53 0,95 0,19 0,85 0,81 0,98 1,42
A3 0,85 0,89 0,08 0,80 0,57 0,58 0,58 0,50
A4 0,13 0,04 0,80 0,40 0,73 0,77 0,95 1,52
Ab 0,00 0,77 0,38 0,41 0,50 0,73 0,80 1,04
A6 0,50 0,43 0,63 0,25 0,22 0,59 0,61 0,66
A7 0,30 0,93 0,00 0,50 0,50 0,46 0,59 0,42
A8 0,35 0,76 0,78 0,27 0,85 0,90 0,91 1,35
A9 0,43 0,55 0,76 0,29 1,00 0,91 1,00 1,56
Al10 0,43 0,69 0,72 0,36 0,86 0,76 0,88 0,80
All 0,84 0,91 1,00 0,60 0,06 0,34 0,34 0,79
Al2 0,09 0,58 0,88 0,20 0,83 0,75 0,98 1,61
Al3 0,51 0,68 0,69 0,29 0,72 0,80 0,89 0,90
Al4 0,29 0,48 0,76 0,14 0,74 0,80 0,92 1,56
Al5 0,83 0,80 0,37 0,21 0,39 0,48 0,59 0,22
Al6 0,34 0,58 0,99 0,20 0,85 0,79 0,99 1,62
Al7 0,21 1,00 0,86 0,71 0,02 0,00 0,00 0,19
Al8 1,00 0,19 0,74 0,04 0,44 0,59 0,69 0,00
Al9 0,34 0,42 0,37 0,00 0,57 0,45 0,97 1,68
A20 0,47 0,23 0,74 0,04 0,52 0,73 0,95 1,39
A21 0,12 0,73 0,72 0,32 0,79 0,82 0,90 1,15
A22 0,26 0,80 0,87 1,00 0,92 1,00 1,00 1,59
A23 0,61 0,73 0,76 0,20 0,96 0,85 0,97 1,48
A24 0,49 0,01 0,43 0,17 0,65 0,62 0,95 1,44
A25 0,84 0,80 0,63 0,41 0,00 0,55 0,53 0,63
Table 11. Bileteral correlation matrix
SUI CO: Gini API EPI SDG HDI WGI
SUl 1,00 -0,02 -0,15 -0,06 -0,38 -0,26 -0,31 -0,50
CO: -0,02 1,00 -0,14 0,59 -0,25 -0,25 -0,53 -0,40
Gini -0,15 -0,14 1,00 -0,09 0,18 0,26 0,16 0,37
API -0,06 0,59 -0,09 1,00 -0,20 -0,17 -0,45 -0,26
EPI -0,38 -0,25 0,18 -0,20 1,00 0,83 0,86 0,69
SDG -0,26 -0,25 0,26 -0,17 0,83 1,00 0,87 0,64
HDI -0,31 -0,53 0,16 -0,45 0,86 0,87 1,00 0,80
WGI -0,50 -0,40 0,37 -0,26 0,69 0,64 0,80 1,00
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Table 11 illustrates the linear relationships between the criteria, which form the basis of the CRITIC
method. An examination of the table reveals high positive correlations (above 0.80), particularly among
EPI, SDG, and HDI; this indicates that these indicators convey similar information and create
informational redundancy. Conversely, the fact that the SUI criterion—the focal point of this study—
exhibits negative correlations with most other criteria (especially WGI and EPI) demonstrates that this
criterion introduces distinct and discriminative information to the dataset.

Table 12. Critic weighting results
SuUl CO: Gini API EPI SDG HDI WGI
Q; 0,26697 0,29381 0,25845 0,24054 0,29138 0,21456 0,24987 0,52857
C; 2,31751 2,34822 1,65487 1,83805 1,53281 1,08775 1,39901 2,99383
w; 0,15275 0,15477 0,10907 0,12115 0,10103 0,07169 0,09221 0,19733
Rank 2 1 5 3 6 8 7 4

Table 12 summarizes the stage where criterion importance levels (weights) are objectively
determined by considering the standard deviation and correlation structure of the data. The results
indicate that criteria such as WGI (0.197) and CO2 (0.154) received the highest weights due to their high
variation and discriminative power within the dataset.

The substantial weight assigned to the SUI criterion (0.152) further indicates that the uncertainty
factor plays a critical role in differentiating countries' sustainability performances, confirming that the
CRITIC method successfully captures this "conflicting" information.

Table 13. EDAS positive distance values from the mean

Code/Criteria SUI CO: Gini API EPI SDG HDI WGI
Al 0,143 0,000 0,035 0,000 0,145 0,014 0,094 0,431
A2 0,000 0,000 0,235 0,000 0,212 0,052 0,086 0,310
A3 0,359 0,648 0,000 1,364 0,000 0,000 0,000 0,000
A4 0,000 0,000 0,113 0,210 0,108 0,037 0,073 0,404
A5 0,000 0,403 0,000 0,230 0,000 0,022 0,003 0,000
A6 0,046 0,000 0,000 0,000 0,000 0,000 0,000 0,000
A7 0,000 0,740 0,000 0,510 0,000 0,000 0,000 0,000
A8 0,000 0,372 0,093 0,000 0,215 0,088 0,051 0,250
A9 0,000 0,000 0,075 0,000 0,351 0,093 0,095 0,445

A10 0,000 0,219 0,047 0,093 0,221 0,035 0,037 0,000
All 0,348 0,678 0,272 0,774 0,000 0,000 0,000 0,000
Al2 0,000 0,004 0,172 0,000 0,194 0,029 0,084 0,489
Al3 0,060 0,203 0,021 0,000 0,094 0,048 0,045 0,000
Al4 0,000 0,000 0,078 0,000 0,114 0,048 0,057 0,437
Al5 0,337 0,464 0,000 0,000 0,000 0,000 0,000 0,000
Al16 0,000 0,004 0,267 0,000 0,214 0,046 0,091 0,494
Al7 0,000 0,877 0,155 1,115 0,000 0,000 0,000 0,000
Al8 0,491 0,000 0,058 0,000 0,000 0,000 0,000 0,000
Al19 0,000 0,000 0,000 0,000 0,000 0,000 0,081 0,552
A20 0,022 0,000 0,061 0,000 0,000 0,021 0,070 0,286
A21 0,000 0,311 0,047 0,000 0,161 0,056 0,049 0,061
A22 0,000 0,464 0,164 1,943 0,275 0,126 0,095 0,473
A23 0,141 0,311 0,075 0,000 0,317 0,069 0,081 0,365
A24 0,037 0,000 0,000 0,000 0,038 0,000 0,071 0,328
A25 0,352 0,464 0,000 0,230 0,000 0,000 0,000 0,000
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Representing the initial computational step of the EDAS method, Table 13 displays the extent to
which countries exceed the "average performance” (or fall below it for cost criteria) on a criterion-by-
criterion basis. The high values observed for countries such as Sweden (A22) and Brazil (A3) in specific
columns suggest that these nations derive a competitive advantage by deviating significantly positively
from the mean in those respective areas (e.g., Brazil’s score in the renewable energy API). Conversely,
values of zero (0.000) indicate that the relevant country fell below the average for that criterion, thereby
failing to generate any "positive" score.

Table 14. EDAS negative distance values from the mean

Code/Criteria SUI CO: Gini API EPI SDG HDI WGI
Al 0,000 1,221 0,000 0,375 0,000 0,000 0,000 0,000
A2 0,102 0,103 0,000 0,405 0,000 0,000 0,000 0,000
A3 0,000 0,000 0,472 0,000 0,039 0,037 0,102 0,535
A4 0,279 1,129 0,000 0,000 0,000 0,000 0,000 0,000
A5 0,395 0,000 0,227 0,000 0,100 0,000 0,000 0,043
A6 0,000 0,317 0,027 0,227 0,358 0,030 0,090 0,394
A7 0,132 0,000 0,538 0,000 0,098 0,081 0,100 0,614
A8 0,084 0,000 0,000 0,176 0,000 0,000 0,000 0,000
A9 0,016 0,072 0,000 0,105 0,000 0,000 0,000 0,000
Al0 0,012 0,000 0,000 0,000 0,000 0,000 0,000 0,260

All 0,000 0,000 0,000 0,000 0,499 0,128 0,218 0,273
Al2 0,318 0,000 0,000 0,354 0,000 0,000 0,000 0,000
Al13 0,000 0,000 0,000 0,110 0,000 0,000 0,000 0,167
Al4 0,140 0,210 0,000 0,553 0,000 0,000 0,000 0,000
Al5 0,000 0,000 0,241 0,339 0,198 0,074 0,099 0,798
Al16 0,096 0,000 0,000 0,380 0,000 0,000 0,000 0,000
Al7 0,213 0,000 0,000 0,000 0,537 0,256 0,379 0,826
Al18 0,000 0,823 0,000 0,822 0,153 0,031 0,050 0,999
Al19 0,091 0,348 0,241 0,944 0,039 0,085 0,000 0,000
A20 0,000 0,746 0,000 0,817 0,082 0,000 0,000 0,000
A21 0,291 0,000 0,000 0,034 0,000 0,000 0,000 0,000
A22 0,168 0,000 0,000 0,000 0,000 0,000 0,000 0,000
A23 0,000 0,000 0,000 0,380 0,000 0,000 0,000 0,000
A24 0,000 1,191 0,193 0,446 0,000 0,018 0,000 0,000
A25 0,000 0,000 0,030 0,000 0,554 0,044 0,125 0,417

Table 14 measures instances where countries fall behind average performance, representing
"weaknesses" in terms of sustainability. An examination of the table reveals that countries such as the
USA (A24) and Russia (A18) exhibit high negative distance values, particularly in the CO- emissions
and Sustainability Uncertainty (SUI) columns; this implies that these nations perform significantly
worse than the average, resulting in a loss of points within the system. For instance, the value of 0.823
in A18’s CO: column serves as evidence of how negatively it diverges from the mean regarding
emissions.

207



A. Alici et. al. Journal of Sustainable Digital Futures 2025 1(2) 194-216

Table 15. EDAS weighting of positive distances from the mean
Code/Criteria SUl CO: Gini API EPI SDG HDI  WGI SPi N-SPi

Al 0,022 0000 0,004 0000 0,015 0,001 0009 0,08 0135 0,291
A2 0,000 0,000 0,026 0000 0,021 0,004 0008 0,061 0120 0,259
A3 0,055 0100 0,000 0,165 0,000 0,000 0000 0,000 0,320 0,690
A4 0,000 0000 0,012 0025 0,011 0,003 0007 0,080 0,138 0,297
A5 0,000 0062 0,000 0,028 0,000 0,002 0000 0,000 0,092 0,198
A6 0,007 0,000 0,000 0,000 0,000 0,000 0000 0,000 0,007 0,015
A7 0,000 0114 0,000 0,062 0,000 0,000 0000 0,000 0,176 0,380
A8 0,000 0,058 0,010 0,000 0,022 0,006 0005 0,049 0,150 0,323
A9 0,000 0000 0,008 0,000 0,036 0007 0009 0,08 0,147 0,317
Al0 0,000 0034 0,005 0011 0,022 0,003 0003 0,000 0,078 0,169
All 0,053 0105 0,030 0,094 0,000 0,000 0000 0,000 0,282 0,607
Al2 0,000 0001 0,019 0,000 0,020 0,002 0008 0,097 0145 0,313
Al3 0,009 0031 0,002 0,000 0,009 0,003 0004 0,000 0,060 0,130
Al4 0,000 0,000 0,009 0,000 0,011 0,003 0005 0,08 0115 0,248
Al5 0,052 0072 0,000 0,000 0,000 0,000 0000 0,000 0,123 0,266
Al6 0,000 0001 0,029 0,000 0,022 0,003 0008 0,097 0160 0,346
Al7 0,000 0136 0,017 0135 0,000 0,000 0000 0,000 0,288 0,620
Al8 0,075 0,000 0,006 0,000 0,000 0,000 0000 0,000 0,081 0,175
Al9 0,000 0,000 0,000 0,000 0,000 0,000 0007 0,109 0,116 0,251
A20 0,003 0,000 0,007 0,000 0,000 0,002 0006 0,05 0074 0,160
A2l 0,000 0,048 0,005 0,000 0,016 0,004 0004 0,012 0,09 0,194
A22 0,000 0072 0,018 0235 0,028 0,009 0009 0,093 0464 1,000
A23 0,022 0048 0,008 0,000 0,032 0,005 0007 0,072 0194 0,418
A24 0,006 0,000 0,000 0,000 0,004 0,000 0007 0,065 0081 0,174
A25 0,054 0072 0,000 0028 0,000 0,000 0000 0,000 0,153 0,331

At this stage, the countries' positive distances (PDA) are multiplied by the CRITIC weights to
transform them into a total "success score" (SPi). A review of the SPi column reveals that Sweden (A22)
achieved the highest score of 0.464 and distinguished itself markedly from other countries by receiving
a full score (1.000) in the normalized value (N-SPi). Table 15 elucidates which countries have best
optimized their strengths (i.e., success in highly weighted criteria).

Table 16 presents the weighted sum of countries' disadvantages (SNi), where the objective is to
minimize this value. Russia (A18) exhibits the highest SNi value at 0.446, making it the most
"penalized" country in terms of performance. Conversely, the notably low SNi values for countries such
as the UK (A23) and Sweden (A22) (0.046 and 0.026, respectively) indicate that these nations possess
very few weaknesses or that their weaknesses are concentrated in criteria with lower weights.

Representing the final output of the entire analysis process, Table 17 presents the overall
sustainability ranking derived from the synthesis of countries' Positive and Negative distances (ASi
score). Sweden (A22) ranks first with a remarkably high score of 0.971, followed by the UK (A23) and
India (A11). At the bottom of the list are Russia (A18) with 0.088 points and China (A6) with 0.279
points; this result summarizes how high emissions and uncertainty can overshadow achievements in
other areas, thereby diminishing overall performance.
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Table 16. EDAS weighting of negative distances from the mean
Code/Criteria SUl CO: Gini API EPI SDG HDI  WGI SNi N-SNi

Al 0,000 0,189 0,000 0,045 0,000 0,000 0,000 0,000 0234 0,475
A2 0,016 0,016 0,000 0,049 0,000 0,000 0,000 0,000 0,081 0,819
A3 0,000 0,000 0,052 0,000 0,004 0003 0,009 0,106 0173 0,612
A4 0,043 0,175 0,000 0,000 0,000 0,000 0,000 0,000 0,217 0,513
A5 0,060 0,000 0,025 0,000 0,010 0,000 0,000 0,008 0,104 0,768
A6 0,000 0,049 0003 0,028 0036 0002 0,008 0,078 0,204 0,543
A7 0,020 0,000 0,059 0,000 0,010 0006 0,009 0,121 0,225 0,496
A8 0,013 0,000 0,000 0,021 0,000 0,000 0,000 0,000 0,034 0,923
A9 0,002 0,011 0,000 0,013 0,000 0,000 0,000 0,000 0,026 0,941
Al0 0,002 0,000 0,000 0,000 0,000 0000 0,000 0,051 0,053 0,881
All 0,000 0,000 0,000 0,000 0,050 0009 0,020 0,054 0134 0,701
Al2 0,049 0,000 0,000 0,043 0,000 0,000 0,000 0,000 0,091 0,795
Al3 0,000 0,000 0,000 0,013 0,000 0000 0,000 0,033 0,046 0,896
Al4 0,021 0,033 0,000 0,067 0,000 0000 0,000 0,000 0121 0,729
Al5 0,000 0,000 0,026 0,041 0,020 0,005 0,000 0,157 0,259 0,419
Al6 0,015 0,000 0,000 0,046 0,000 0,000 0,000 0,000 0,061 0,864
Al7 0,033 0,000 0,000 0,000 0,054 0018 0,035 0,163 0303 0,321
Al8 0,000 0,127 0,000 0,100 0,015 0,002 0,005 0,197 0,446 0,000
Al9 0,014 0,054 0026 0,114 0,004 0,006 0,000 0,000 0218 0,511
A20 0,000 0,116 0,000 0,099 0,008 0,000 0,000 0,000 0,223 0,501
A21 0,044 0,000 0,000 0,004 0,000 0000 0,000 0,000 0,049 0,891
A22 0,026 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,026 0,943
A23 0,000 0,000 0,000 0,046 0,000 0,000 0,000 0,000 0,046 0,897
A24 0,000 0,184 0,021 0,054 0,000 0,001 0,000 0,000 0261 0,416
A25 0,000 0,000 0,003 0,000 0,05 0003 0,012 0,082 015 0,650

Table 17. EDAS final ranking

Code Country ASi Ranking Al3 Italy 0,513 12
Al Australia 0,383 19 Al4 Japan 0,488 14
A2 Belgium 0,539 10 Al5 Mexico 0,342 21
A3 Brazil 0,651 4 Al6 Netherlands 0,605 7
A4 Canada 0,405 18 Al7 Pakistan 0,471 16
A5 Chile 0,483 15 Al8 Russia 0,088 25
Ab China 0,279 24 Al9 Singapore 0,381 20
A7 Colombia 0,438 17 A20 S Korea 0,331 22
A8 France 0,623 6 A2l Spain 0,543 9
A9 Germany 0,629 5 A22 Sweden 0,971

Al10 Greece 0,525 11 A23 UK 0,658 2
All India 0,654 3 A24 uUs 0,295 23
Al2 Ireland 0,554 8 A25 Vietnam 0,490 13

4.1. Sensitivity analysis

In this study, the Monte Carlo simulation method was applied to verify the robustness of the proposed
EDAS model and to measure the resilience of the obtained country rankings against uncertainties in the
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criterion weights. Unlike classical one-dimensional sensitivity analyses, this study simultaneously and
randomly manipulated all criterion weights to explore a more comprehensive uncertainty space. The
simulation and analysis process was performed using a computational algorithm developed in the Python
programming language. In the algorithmic infrastructure, NumPy and Pandas libraries were used for
multidimensional matrix operations and iterative calculations of the EDAS method. In contrast,
Matplotlib and Seaborn libraries were used for statistical visualization (box plots, heat maps, and scatter
diagrams) of the large data set obtained. During the analysis process, a random perturbation of £20%
was applied to the base weight coefficients (w;) determined by the CRITIC method, and 10,000 different
scenarios were derived in accordance with a uniform distribution.
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Figure 1. Country-based ranking distribution (cumulative bar chart)
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The stacked bar Figure 1 presents the cumulative distribution of rankings achieved by each country
throughout the simulation scenarios. The concentration of columns for countries like A22 and A3 on the
left side of the graph in a single color or limited color blocks indicates high performance stability for
these countries. However, as one moves towards the middle section (especially A12, A10, A25), the
fragmented structure of columns with numerous different colors becomes noticeable, revealing that the
rankings of these countries fluctuate over a wide range depending on weighting changes, thereby
increasing ranking uncertainty. A18, located on the far right, consistently ranks low (yellow blocks),
indicating negative stability.
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Heatmap presented in Figure 2 visualizes the probability of countries achieving specific ranking
positions as a result of Monte Carlo simulation. Darker cells indicate a higher frequency (probability)
of the country being in that position. For example, the intense dark color in the first-rank column for
country A22 demonstrates that it maintains its top position regardless of weighting changes, and the
results are quite robust for this country. In contrast, the color distribution of mid-ranked countries, such
as A14 and A5, is spread over a wide area on the horizontal axis, and the colors become more faded,
indicating that these countries' rankings are more sensitive to criterion weightings and that assigning a
precise ranking is challenging.
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Figure 3. Performance vs. stability analysis (scatter plot)

Figure 3 shows the scatter plot analyzes the relationship between countries' "average performance"
(X-axis) and "ranking stability" (Y-axis) in strategic terms. A22, located in the ideal position in the lower
left corner, is the most successful and reliable country in the system, as it has both the best average
ranking and a standard deviation close to zero. A14 and A17, located at the top of the graph (above 1.50
on the Y-axis), stand out as the countries with the highest standard deviation values despite their average
performance, indicating that they have the most fragile (volatile) structure against weight changes. This
graph is critical because it shows decision-makers not only who is first, but also whose position is
"guaranteed."

The Monte Carlo sensitivity analysis (10,000 scenarios and +20% random variation in weights)
applied to test the validity of the ranking obtained using the EDAS method demonstrated that the
proposed model possesses a high level of robustness. As a result of the analysis, country A22 maintained
its leadership across all weighting scenarios, demonstrating the undisputed best performance, while
country A18 remained in last place with similar stability. Despite this reliable structure observed at the
top and bottom of the ranking, it was found that the standard deviation increased in the middle ranks
(particularly in countries such as A14 and A17) and that the ranking positions varied according to the
criteria preferences; This situation proves that the performance of the countries concerned is dependent
on specific criteria, but that the general ranking hierarchy (based on upper, middle, and lower groups)
remains intact.

5. Conclusion

This study aims to contribute to the literature by evaluating countries' sustainability performance not
only through established environmental, social, and governance (ESG) indicators but also by including
the concept of "uncertainty", which directly affects the feasibility of these policies. The Sustainability
Uncertainty Index (SUI/ESGUI) integrates the HDI and the WGI into a multidimensional framework
that assesses sustainability not only in physical or economic terms but also in terms of human
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development and the rule of law. HDI, and WGI. This multidimensional framework demonstrates that
sustainability is not merely a physical or economic output but also a matter of institutional predictability.
The findings of the CRITIC weighting method, applied based on the internal information structure of
the data set, reveal that the Rule of Law and SUI are the criteria with the highest discriminatory power
in distinguishing countries' performance. This statistically confirms that the elements of "institutional
trust" and "policy stability," which are often overlooked in sustainability discussions, are in fact variables
that are just as decisive as carbon emissions.

When examining the performance ranking conducted using the EDAS method, Sweden (A22) stands
out as the leader, clearly distinguishing itself from other countries due to its low uncertainty level and
superior performance in environmental and social indicators. The fact that the United Kingdom and
India follow Sweden demonstrates that the model's logic of "positive deviation from the average
solution" can bend the traditional hierarchy between developed and developing countries by focusing
on specific areas of success (such as India's low per capita emissions or renewable energy potential). In
contrast, it is noteworthy that Russia, China, and the United States, despite being global economic
powers, rank near the bottom of the list. In particular, Russia's highest negative distance score is a
concrete demonstration of how high carbon emissions, deepening income inequality, and a weak legal
system, combined with high policy uncertainty, can undermine a country's sustainability record. This
result reveals that economic size or industrial capacity alone is not sufficient for building a sustainable
future; instead, governance weaknesses can turn this capacity into a "punitive" factor.

The Monte Carlo simulation applied to test the reliability of the obtained ranking has confirmed the
structural stability of the proposed model. The sensitivity analysis conducted under ten thousand
different scenarios showed that Sweden's leadership and Russia's last place remained unchanged despite
random changes in weight coefficients. However, the study also revealed that the ranking positions of
countries in the middle range (such as Japan or Chile) exhibited a more sensitive and variable structure
in response to criterion preferences. This finding suggests that countries in the "fragile" or "transitional"
performance group should adopt a balanced improvement policy encompassing all criteria, rather than
focusing their sustainability strategies on a single area (such as energy alone).

From the perspective of policymakers, the most fundamental recommendation offered by this study
is the necessity to redefine sustainability strategies around the axis of "uncertainty management".
Findings indicate that countries that enhance predictability in environmental regulations, avoid sudden
policy changes, and establish the rule of law gain a competitive advantage in the green transition process.
Therefore, "decarbonization" goals should be pursued not only as a technological infrastructure
investment but also in tandem with improving institutional quality and ensuring social justice (as
measured by the Gini and HDI indices). For developing countries in particular, this study demonstrates
that minimizing institutional uncertainty, in addition to reducing emissions, is a low-cost yet high-impact
lever for achieving top rankings in the global sustainability league.

This study has several limitations, which also present significant opportunities for future research.
First, the analysis was conducted with a limited set of criteria consisting of 25 selected countries and
eight indicators (SUI, CO., Gini, API, EPI, SDG, HDI, and WGI), largely representative of the year
2023. Therefore, expanding both the country coverage and the diversity of indicators would increase the
generalizability and explanatory power of the findings. Furthermore, the study presents a cross-sectional
and static ranking based on the CRITIC and EDAS methods; it does not directly examine
transformations over time, structural breaks, or the effects of policy interventions. Therefore, future
research is recommended to incorporate dynamic MCDM approaches with panel datasets covering
longer periods, combined with econometric models focusing on causal relationships (e.g., panel
regressions using EDAS scores as dependent or independent variables).
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